scispace - formally typeset
Search or ask a question
Institution

Laboratory of Molecular Biology

FacilityCambridge, Cambridgeshire, United Kingdom
About: Laboratory of Molecular Biology is a facility organization based out in Cambridge, Cambridgeshire, United Kingdom. It is known for research contribution in the topics: Gene & RNA. The organization has 19395 authors who have published 24236 publications receiving 2101480 citations.
Topics: Gene, RNA, DNA, Population, Receptor


Papers
More filters
Journal ArticleDOI
TL;DR: The development of an in vitro system to study how nuclear Ran is replenished is described, which probably involves nucleotide exchange to generate RanGTP, for which NTF2 has no detectable affinity, followed by binding of the RanG TP to an importin β family transport receptor.
Abstract: Importin beta family transport receptors shuttle between the nucleus and the cytoplasm and mediate transport of macromolecules through nuclear pore complexes (NPCs). The interactions between these receptors and their cargoes are regulated by binding RanGTP; all receptors probably exit the nucleus complexed with RanGTP, and so should deplete RanGTP continuously from the nucleus. We describe here the development of an in vitro system to study how nuclear Ran is replenished. Nuclear import of Ran does not rely on simple diffusion as Ran's small size would permit, but instead is stimulated by soluble transport factors. This facilitated import is specific for cytoplasmic RanGDP and employs nuclear transport factor 2 (NTF2) as the actual carrier. NTF2 binds RanGDP initially to NPCs and probably also mediates translocation of the NTF2-RanGDP complex to the nuclear side of the NPCs. A direct NTF2-RanGDP interaction is crucial for this process, since point mutations that disturb the RanGDP-NTF2 interaction also interfere with Ran import. The subsequent nuclear accumulation of Ran also requires GTP, but not GTP hydrolysis. The release of Ran from NTF2 into the nucleus, and thus the directionality of Ran import, probably involves nucleotide exchange to generate RanGTP, for which NTF2 has no detectable affinity, followed by binding of the RanGTP to an importin beta family transport receptor.

470 citations

Journal ArticleDOI
TL;DR: In this article, the amino acid sequence of GPDH was compared from the point of view of three-dimensional structure and mode of action as well as protein evolution, and it was shown that a common biochemical function may be reflected in a similarity in linear and/or 3-dimensional structures of different NAD-linked enzymes.

470 citations

Journal ArticleDOI
27 Jan 1994-Nature
TL;DR: The three-dimensional structure of pentameric human serum amyloid P component at high resolution, the first reported for a pentraxin, reveals that the tertiary fold is remarkably similar to that of the legume lectins.
Abstract: The three-dimensional structure of pentameric human serum amyloid P component at high resolution, the first reported for a pentraxin, reveals that the tertiary fold is remarkably similar to that of the legume lectins. Carboxylate and phosphate compounds bind directly to two calcium ions; interactions with a carboxyethylidene ring are mediated by Asn 59 and Gln 148 ligands of the calcium ions. These X-ray results indicate the probable modes of binding of the biologically important ligands, DNA and amyloid fibrils.

470 citations

Journal ArticleDOI
02 Apr 2010-Science
TL;DR: Analysis of the molecular mechanisms underlying AP1 function indicates that it functions first to repress vegetative identity, then to help establish floral primordia, and finally to shape the differentiation of floral parts, implying that AP1 orchestrates floral initiation by integrating growth, patterning, and hormonal pathways.
Abstract: The MADS-domain transcription factor APETALA1 (AP1) is a key regulator of Arabidopsis flower development. To understand the molecular mechanisms underlying AP1 function, we identified its target genes during floral initiation using a combination of gene expression profiling and genome-wide binding studies. Many of its targets encode transcriptional regulators, including known floral repressors. The latter genes are down-regulated by AP1, suggesting that it initiates floral development by abrogating the inhibitory effects of these genes. Although AP1 acts predominantly as a transcriptional repressor during the earliest stages of flower development, at more advanced stages it also activates regulatory genes required for floral organ formation, indicating a dynamic mode of action. Our results further imply that AP1 orchestrates floral initiation by integrating growth, patterning, and hormonal pathways.

470 citations

Journal ArticleDOI
TL;DR: Using the structures of telokin, and variable domains from antibodies, CD4 and CD8, a profile is constructed that describes the sequence characteristics of the structural core common to those proteins that form the cell adhesion molecules and surface receptors.

469 citations


Authors

Showing all 19431 results

NameH-indexPapersCitations
Robert J. Lefkowitz214860147995
Ronald M. Evans199708166722
Tony Hunter175593124726
Marc G. Caron17367499802
Mark Gerstein168751149578
Timothy A. Springer167669122421
Harvey F. Lodish165782101124
Ira Pastan1601286110069
Bruce N. Ames158506129010
Philip Cohen154555110856
Gerald M. Rubin152382115248
Ashok Kumar1515654164086
Kim Nasmyth14229459231
Kenneth M. Yamada13944672136
Harold E. Varmus13749676320
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

96% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

96% related

Wellcome Trust Sanger Institute
9.6K papers, 1.2M citations

94% related

National Institutes of Health
297.8K papers, 21.3M citations

94% related

Scripps Research Institute
32.8K papers, 2.9M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20239
202265
20211,222
20201,165
20191,082
2018945