scispace - formally typeset
Search or ask a question
Institution

Laboratory of Molecular Biology

FacilityCambridge, Cambridgeshire, United Kingdom
About: Laboratory of Molecular Biology is a facility organization based out in Cambridge, Cambridgeshire, United Kingdom. It is known for research contribution in the topics: Gene & RNA. The organization has 19395 authors who have published 24236 publications receiving 2101480 citations.
Topics: Gene, RNA, DNA, Population, Transcription (biology)


Papers
More filters
Journal ArticleDOI
10 May 1996-Science
TL;DR: The WHN transcription factor was shown to be the product of the nude locus and these results define the first genetically separable steps during thymic epithelial differentiation.
Abstract: The development of the thymus depends initially on epithelial-mesenchymal and subsequently on reciprocal lympho-stromal interactions. The genetic steps governing development and differentiation of the thymic microenvironment are unknown. With the use of a targeted disruption of the whn gene, which recapitulates the phenotype of the athymic nude mouse, the WHN transcription factor was shown to be the product of the nude locus. Formation of the thymic epithelial primordium before the entry of lymphocyte progenitors did not require the activity of WHN. However, subsequent differentiation of primitive precursor cells into subcapsular, cortical, and medullary epithelial cells of the postnatal thymus did depend on activity of the whn gene. These results define the first genetically separable steps during thymic epithelial differentiation.

457 citations

Journal ArticleDOI
TL;DR: It is revealed that SOD1 aggregates, propagate in a prion-like manner in neuronal cells and sheds light on the mechanisms underlying aggregate uptake and cell-to-cell transfer.
Abstract: Deposition of proteins of aberrant conformation is the hallmark of many neurodegenerative diseases. Misfolding of the normally globular mutant superoxide dismutase-1 (SOD1) is a central, early, but poorly understood event in the pathogenic cascade leading to familial forms of ALS. Here we report that aggregates composed of an ALS-causing SOD1 mutant penetrate inside cells by macropinocytosis and rapidly exit the macropinocytic compartment to nucleate aggregation of the cytosolic, otherwise soluble, mutant SOD1 protein. Once initiated, mutant SOD1 aggregation is self-perpetuating. Mutant SOD1 aggregates transfer from cell to cell with remarkable efficiency, a process that does not require contacts between cells but depends on the extracellular release of aggregates. This study reveals that SOD1 aggregates, propagate in a prion-like manner in neuronal cells and sheds light on the mechanisms underlying aggregate uptake and cell-to-cell transfer.

457 citations

Journal ArticleDOI
16 Oct 1998-Cell
TL;DR: The generation of Tg mice expressing selected HIV-1 gene(s) revealed that nef harbors a major disease determinant, suggesting that Nef may play a critical role in human AIDS, independently of its role in virus replication.

456 citations

Journal ArticleDOI
07 Jul 2000
TL;DR: The crystal structure of a complex between importin-beta residues 1-442 (Ib442) and five FxFG nucleoporin repeats from Nsp1p is described, providing direct evidence for the functional significance of the import in-beta-FxFG interaction.
Abstract: We describe the crystal structure of a complex between importin-beta residues 1-442 (Ib442) and five FxFG nucleoporin repeats from Nsp1p. Nucleoporin FxFG cores bind on the convex face of Ib442 to a primary site between the A helices of HEAT repeats 5 and 6, and to a secondary site between HEAT repeats 6 and 7. Mutations at importin-beta Ile178 in the primary FxFG binding site reduce both binding and nuclear protein import, providing direct evidence for the functional significance of the importin-beta-FxFG interaction. The FxFG binding sites on importin-beta do not overlap with the RanGTP binding site. Instead, RanGTP may release importin-beta from FxFG nucleoporins by generating a conformational change that alters the structure of the FxFG binding site.

456 citations

Journal ArticleDOI
11 May 2007-Science
TL;DR: In vivo and in vitro studies reveal a central role for Fbxl3 in mammalian circadian timekeeping and identify a mouse mutation, after hours (Afh), which results in long free-running rhythms of about 27 hours in homozygotes.
Abstract: By screening N-ethyl-N-nitrosourea–mutagenized animals for alterations in rhythms of wheel-running activity, we identified a mouse mutation, after hours (Afh). The mutation, a Cys358Ser substitution in Fbxl3, an F-box protein with leucine-rich repeats, results in long free-running rhythms of about 27 hours in homozygotes. Circadian transcriptional and translational oscillations are attenuated in Afh mice. The Afh allele significantly affected Per2 expression and delayed the rate of Cry protein degradation in Per2::Luciferase tissue slices. Our in vivo and in vitro studies reveal a central role for Fbxl3 in mammalian circadian timekeeping.

455 citations


Authors

Showing all 19431 results

NameH-indexPapersCitations
Robert J. Lefkowitz214860147995
Ronald M. Evans199708166722
Tony Hunter175593124726
Marc G. Caron17367499802
Mark Gerstein168751149578
Timothy A. Springer167669122421
Harvey F. Lodish165782101124
Ira Pastan1601286110069
Bruce N. Ames158506129010
Philip Cohen154555110856
Gerald M. Rubin152382115248
Ashok Kumar1515654164086
Kim Nasmyth14229459231
Kenneth M. Yamada13944672136
Harold E. Varmus13749676320
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

96% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

96% related

Wellcome Trust Sanger Institute
9.6K papers, 1.2M citations

94% related

National Institutes of Health
297.8K papers, 21.3M citations

94% related

Scripps Research Institute
32.8K papers, 2.9M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20239
202265
20211,222
20201,165
20191,082
2018945