scispace - formally typeset
Search or ask a question
Institution

Laboratory of Molecular Biology

FacilityCambridge, Cambridgeshire, United Kingdom
About: Laboratory of Molecular Biology is a facility organization based out in Cambridge, Cambridgeshire, United Kingdom. It is known for research contribution in the topics: Gene & RNA. The organization has 19395 authors who have published 24236 publications receiving 2101480 citations.
Topics: Gene, RNA, DNA, Population, Receptor


Papers
More filters
Journal ArticleDOI
23 Nov 1978-Nature
TL;DR: Protein subunits in the two layers of the disk of tobacco mosaic virus have very similar conformations, including salt-bridge systems and aromatic clusters within each molecule linked in a hydrophobic girdle encircling each ring.
Abstract: Protein subunits in the two layers of the disk of tobacco mosaic virus have very similar conformations. Much of the bonding between subunits is polar, including salt-bridge systems. Arginine residues play a prominent part here and elsewhere. Interactions within each layer involve groups whose contacts can be adjusted to allow the transition from disk to virus helix. Aromatic clusters within each molecule are linked in a hydrophobic girdle encircling each ring.

379 citations

Journal ArticleDOI
TL;DR: A unique spatiotemporal pattern of MMP-9 expression suggests its involvement in activity-dependent remodeling of dendritic architecture with possible effects on synaptic physiology.
Abstract: Neurons of adult brain are able to remodel their synaptic connections in response to various stimuli. Modifications of the peridendritic environment, including the extracellular matrix, are likely to play a role during synapse remodeling. Proteolytic disassembly of ECM is a complex process using the regulated actions of specific extracellular proteinases. One of best-characterized families of matrix-modifying enzymes is the matrix metalloproteinase (MMP) family. Here, we describe changes in the expression and function of two well known MMPs, MMP-9 and MMP-2, in adult rat brain before and after systemic administration of the glutamate receptor agonist kainate. Kainate application results in enhanced synaptic transmission and seizures followed by selective tissue remodeling, primarily in hippocampal dentate gyrus. MMP-9 but not MMP-2 was highly expressed by neurons in normal adult rat brain. MMP-9 protein was localized in neuronal cell bodies and dendrites. Kainate upregulated the level of MMP-9 mRNA and protein within hours after drug administration. This was followed several hours later by MMP-9 enzymatic activation. Within hippocampus, MMP-9 mRNA and activity were increased selectively in dentate gyrus, including its dendritic layer. In addition, MMP-9 mRNA levels decreased in areas undergoing neuronal cell loss. This unique spatiotemporal pattern of MMP-9 expression suggests its involvement in activity-dependent remodeling of dendritic architecture with possible effects on synaptic physiology.

379 citations

Journal ArticleDOI
TL;DR: It is shown that the previously described kin recognition between enzymes of the medial Golgi involves the lumenal portions of these proteins rather than their TMDs, which allows for reconciliation with the kin recognition model which appears to act on sequences outside of the TMD.
Abstract: The single transmembrane domains (TMDs) of the resident glycosylation enzymes of the Golgi apparatus are involved in preventing these proteins moving beyond the Golgi. It has been proposed that either the TMDs associate, resulting in the formation of large oligomers of Golgi enzymes, or that they mediate the lateral segregation of the enzymes between lipid microdomains. Evidence for either type of interaction has been sought by examining the retention of sialyltransferase (ST), an enzyme of the mammalian trans Golgi. No evidence could be obtained for specific interactions or 'kin recognition' between ST and other proteins of the trans Golgi. Moreover, it is shown that the previously described kin recognition between enzymes of the medial Golgi involves the lumenal portions of these proteins rather than their TMDs. To investigate further the role of the ST TMD, the effects on Golgi retention of various alterations in the TMD were examined. The addition or removal of residues showed that the efficiency of retention of ST is related to TMD length. Moreover, when a type I plasma membrane protein was expressed with a synthetic TMD of 23 leucines it appeared on the cell surface, but when the TMD was shortened to 17 leucines accumulation in the Golgi was observed. These observations are more consistent with lipid-based sorting of ST TMD, but they also allow for reconciliation with the kin recognition model which appears to act on sequences outside of the TMD.

379 citations

Journal ArticleDOI
TL;DR: By comparing two apparently unrelated families of yeast Golgi mannosyltransferases, a short motif containing two aspartate residues was observed that was conserved in both groups of proteins, suggesting it is a feature of the catalytic site, or an element of a structural fold, shared by many glycosyl transferases.
Abstract: A wide diversity of biological molecules are modified by the addition of sugar residues, and a large number of glycosyltransferases have been identified that are responsible for these reactions. Despite catalyzing closely related reactions, many of these transferases show little apparent sequence homology. By comparing two apparently unrelated families of yeast Golgi mannosyltransferases, a short motif containing two aspartate residues was observed that was conserved in both groups of proteins. Mutagenesis of one of the members of these families, the α-1,3-mannosyltransferase Mnn1p, showed that altering either of these aspartates eliminates all enzymatic activity. These changes do not appear to affect the overall folding and assembly of Mnn1p. A similar aspartate-containing sequence was found to be conserved in a diverse range of other glycosyltransferase families, much more frequently than would be expected by chance, suggesting that it is a feature of the catalytic site, or an element of a structural fold, shared by many glycosyltransferases.

378 citations

Journal ArticleDOI
TL;DR: How a library of zinc fingers displayed on the surface of bacteriophage enables selection of fingers capable of binding to given DNA triplets, and a complementary technique which confirms the identity of amino acids capable of DNA sequence discrimination from these positions are described.
Abstract: We have used two selection techniques to study sequence-specific DNA recognition by the zinc finger, a small, modular DNA-binding minidomain. We have chosen zinc fingers because they bind as independent modules and so can be linked together in a peptide designed to bind a predetermined DNA site. In this paper, we describe how a library of zinc fingers displayed on the surface of bacteriophage enables selection of fingers capable of binding to given DNA triplets. The amino acid sequences of selected fingers which bind the same triplet are compared to examine how sequence-specific DNA recognition occurs. Our results can be rationalized in terms of coded interactions between zinc fingers and DNA, involving base contacts from a few alpha-helical positions. In the paper following this one, we describe a complementary technique which confirms the identity of amino acids capable of DNA sequence discrimination from these positions.

378 citations


Authors

Showing all 19431 results

NameH-indexPapersCitations
Robert J. Lefkowitz214860147995
Ronald M. Evans199708166722
Tony Hunter175593124726
Marc G. Caron17367499802
Mark Gerstein168751149578
Timothy A. Springer167669122421
Harvey F. Lodish165782101124
Ira Pastan1601286110069
Bruce N. Ames158506129010
Philip Cohen154555110856
Gerald M. Rubin152382115248
Ashok Kumar1515654164086
Kim Nasmyth14229459231
Kenneth M. Yamada13944672136
Harold E. Varmus13749676320
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

96% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

96% related

Wellcome Trust Sanger Institute
9.6K papers, 1.2M citations

94% related

National Institutes of Health
297.8K papers, 21.3M citations

94% related

Scripps Research Institute
32.8K papers, 2.9M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20239
202265
20211,222
20201,165
20191,082
2018945