scispace - formally typeset
Search or ask a question
Institution

Laboratory of Molecular Biology

FacilityCambridge, Cambridgeshire, United Kingdom
About: Laboratory of Molecular Biology is a facility organization based out in Cambridge, Cambridgeshire, United Kingdom. It is known for research contribution in the topics: Gene & RNA. The organization has 19395 authors who have published 24236 publications receiving 2101480 citations.
Topics: Gene, RNA, DNA, Population, Transcription (biology)


Papers
More filters
Journal ArticleDOI
TL;DR: Analysis of the mitochondrial electron flow revealed that TNF treatment led to a rapid inhibition of the mitochondria to oxidize succinate and NADH-linked substrates, which is suggestive evidence that mitochondrial production of oxygen radicals mainly generated at the ubisemiquinone site is a causal mechanism of TNF cytotoxicity.

944 citations

Journal ArticleDOI
13 Aug 1993-Cell
TL;DR: An element near the 5' boundary of the chicken beta-globin domain that insulates a reporter gene from the activating effects of a nearby beta- globin locus control region (5'HS2) when assayed in the human erythroid cell line K562 is characterized.

940 citations

Journal ArticleDOI
TL;DR: A toolbox for high-efficiency genome engineering of Drosophila melanogaster consisting of transgenic Cas9 lines and versatile guide RNA (gRNA) expression plasmids is reported, which will facilitate the rapid evaluation of mutant phenotypes of specific genes and the precise modification of the genome with single-nucleotide precision.
Abstract: The type II clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system has emerged recently as a powerful method to manipulate the genomes of various organisms. Here, we report a toolbox for high-efficiency genome engineering of Drosophila melanogaster consisting of transgenic Cas9 lines and versatile guide RNA (gRNA) expression plasmids. Systematic evaluation reveals Cas9 lines with ubiquitous or germ-line–restricted patterns of activity. We also demonstrate differential activity of the same gRNA expressed from different U6 snRNA promoters, with the previously untested U6:3 promoter giving the most potent effect. An appropriate combination of Cas9 and gRNA allows targeting of essential and nonessential genes with transmission rates ranging from 25–100%. We also demonstrate that our optimized CRISPR/Cas tools can be used for offset nicking-based mutagenesis. Furthermore, in combination with oligonucleotide or long double-stranded donor templates, our reagents allow precise genome editing by homology-directed repair with rates that make selection markers unnecessary. Last, we demonstrate a novel application of CRISPR/Cas-mediated technology in revealing loss-of-function phenotypes in somatic cells following efficient biallelic targeting by Cas9 expressed in a ubiquitous or tissue-restricted manner. Our CRISPR/Cas tools will facilitate the rapid evaluation of mutant phenotypes of specific genes and the precise modification of the genome with single-nucleotide precision. Our results also pave the way for high-throughput genetic screening with CRISPR/Cas.

940 citations

Journal ArticleDOI
TL;DR: Using individual nucleotide-resolution ultraviolet cross-linking and immunoprecipitation, it is found that TDP-43 preferentially bound long clusters of UG-rich sequences in vivo, highlighting the importance of T DP-43 for the regulation of splicing in the brain.
Abstract: TDP-43 is a predominantly nuclear RNA-binding protein that forms inclusion bodies in frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). The mRNA targets of TDP-43 in the human brain and its role in RNA processing are largely unknown. Using individual nucleotide-resolution ultraviolet cross-linking and immunoprecipitation (iCLIP), we found that TDP-43 preferentially bound long clusters of UG-rich sequences in vivo. Analysis of RNA binding by TDP-43 in brains from subjects with FTLD revealed that the greatest increases in binding were to the MALAT1 and NEAT1 noncoding RNAs. We also found that binding of TDP-43 to pre-mRNAs influenced alternative splicing in a similar position-dependent manner to Nova proteins. In addition, we identified unusually long clusters of TDP-43 binding at deep intronic positions downstream of silenced exons. A substantial proportion of alternative mRNA isoforms regulated by TDP-43 encode proteins that regulate neuronal development or have been implicated in neurological diseases, highlighting the importance of TDP-43 for the regulation of splicing in the brain.

939 citations

Journal ArticleDOI
TL;DR: The theoretical background defining its strength and directionality, a systematic analysis of its occurrence and interaction geometries in protein-ligand complexes, and recent examples where halogen bonding has been successfully harnessed for lead identification and optimization are provided.
Abstract: Halogen bonding has been known in material science for decades, but until recently, halogen bonds in protein–ligand interactions were largely the result of serendipitous discovery rather than rational design. In this Perspective, we provide insights into the phenomenon of halogen bonding, with special focus on its role in drug discovery. We summarize the theoretical background defining its strength and directionality, provide a systematic analysis of its occurrence and interaction geometries in protein–ligand complexes, and give recent examples where halogen bonding has been successfully harnessed for lead identification and optimization. In light of these data, we discuss the potential and limitations of exploiting halogen bonds for molecular recognition and rational drug design.

934 citations


Authors

Showing all 19431 results

NameH-indexPapersCitations
Robert J. Lefkowitz214860147995
Ronald M. Evans199708166722
Tony Hunter175593124726
Marc G. Caron17367499802
Mark Gerstein168751149578
Timothy A. Springer167669122421
Harvey F. Lodish165782101124
Ira Pastan1601286110069
Bruce N. Ames158506129010
Philip Cohen154555110856
Gerald M. Rubin152382115248
Ashok Kumar1515654164086
Kim Nasmyth14229459231
Kenneth M. Yamada13944672136
Harold E. Varmus13749676320
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

96% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

96% related

Wellcome Trust Sanger Institute
9.6K papers, 1.2M citations

94% related

National Institutes of Health
297.8K papers, 21.3M citations

94% related

Scripps Research Institute
32.8K papers, 2.9M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20239
202265
20211,222
20201,165
20191,082
2018945