scispace - formally typeset
Search or ask a question
Institution

Laboratory of Molecular Biology

FacilityCambridge, Cambridgeshire, United Kingdom
About: Laboratory of Molecular Biology is a facility organization based out in Cambridge, Cambridgeshire, United Kingdom. It is known for research contribution in the topics: Gene & RNA. The organization has 19395 authors who have published 24236 publications receiving 2101480 citations.
Topics: Gene, RNA, DNA, Population, Transcription (biology)


Papers
More filters
Journal ArticleDOI
28 May 1982-Science
TL;DR: Exogenous serotonin and octopamine elicit specific and opposite behavioral responses in Caenorhabditis elegans, suggesting that these compounds function physiologically as antagonists.
Abstract: The biogenic amines serotonin and octopamine are present in the nematode Caenorhabditis elegans. Serotonin, detected histochemically in whole mounts, is localized in two pharyngeal neurons that appear to be neurosecretory. Octopamine, identified radioenzymatically in crude extracts, probably is also localized in a few neurons. Exogenous serotonin and octopamine elicit specific and opposite behavioral responses in Caenorhabditis elegans, suggesting that these compounds function physiologically as antagonists.

575 citations

Journal ArticleDOI
18 Mar 2010-Nature
TL;DR: This work synthetically evolve an orthogonal ribosome (ribo-Q1) that efficiently decodes a series of quadruplet codons and the amber codon, providing several blank codons on an Orthogonal messenger RNA, which it specifically translates.
Abstract: The in vivo, genetically programmed incorporation of designer amino acids allows the properties of proteins to be tailored with molecular precision. The Methanococcus jannaschii tyrosyl-transfer-RNA synthetase-tRNA(CUA) (MjTyrRS-tRNA(CUA)) and the Methanosarcina barkeri pyrrolysyl-tRNA synthetase-tRNA(CUA) (MbPylRS-tRNA(CUA)) orthogonal pairs have been evolved to incorporate a range of unnatural amino acids in response to the amber codon in Escherichia coli. However, the potential of synthetic genetic code expansion is generally limited to the low efficiency incorporation of a single type of unnatural amino acid at a time, because every triplet codon in the universal genetic code is used in encoding the synthesis of the proteome. To encode efficiently many distinct unnatural amino acids into proteins we require blank codons and mutually orthogonal aminoacyl-tRNA synthetase-tRNA pairs that recognize unnatural amino acids and decode the new codons. Here we synthetically evolve an orthogonal ribosome (ribo-Q1) that efficiently decodes a series of quadruplet codons and the amber codon, providing several blank codons on an orthogonal messenger RNA, which it specifically translates. By creating mutually orthogonal aminoacyl-tRNA synthetase-tRNA pairs and combining them with ribo-Q1 we direct the incorporation of distinct unnatural amino acids in response to two of the new blank codons on the orthogonal mRNA. Using this code, we genetically direct the formation of a specific, redox-insensitive, nanoscale protein cross-link by the bio-orthogonal cycloaddition of encoded azide- and alkyne-containing amino acids. Because the synthetase-tRNA pairs used have been evolved to incorporate numerous unnatural amino acids, it will be possible to encode more than 200 unnatural amino acid combinations using this approach. As ribo-Q1 independently decodes a series of quadruplet codons, this work provides foundational technologies for the encoded synthesis and synthetic evolution of unnatural polymers in cells.

574 citations

Journal ArticleDOI
TL;DR: The paired helical filament, the principal constituent of the neurofibrillary tangles characteristic of Alzheimer disease, is shown to consist of two structurally distinct parts, and the mass per unit length measurements imply that the three-domain structural subunit of the core has a molecular mass of approximately equal to 100 kDa.
Abstract: The paired helical filament, the principal constituent of the neurofibrillary tangles characteristic of Alzheimer disease, is shown to consist of two structurally distinct parts. An external fuzzy region can be removed by Pronase treatment to leave a Pronase-resistant morphologically recognizable core. Scanning transmission electron microscopy gives an estimate for the mass per unit length as 79 kDa.nm-1 before Pronase treatment and 65 kDa.nm-1 after treatment. The fuzzy region carries all the epitopes recognized by two different antisera against microtubule-associated protein tau. By contrast, a monoclonal antibody (mAb) we have raised to paired helical filament cores (mAb 423) decorates Pronase-treated filaments much more strongly than it does untreated ones. We have shown in previous papers that the epitope recognized by mAb 423 is carried by a central 9.5-kDa fragment of tau protein, which therefore forms part of the Pronase-resistant core structure. The remainder of the tau protein incorporated into the filaments must contribute part, if not all, of the fuzzy region. The mass per unit length measurements imply that the three-domain structural subunit of the core that we visualized previously by image reconstruction has a molecular mass of approximately equal to 100 kDa.

574 citations

Journal ArticleDOI
19 Oct 2001-Cell
TL;DR: Rhomboid-1 is conserved throughout evolution from archaea to humans, and the results show that a human Rhomboid promotes Spitz cleavage by a similar mechanism, suggesting that this growth factor activation mechanism may therefore be widespread.

572 citations

Journal ArticleDOI
04 Jan 2001-Nature
TL;DR: The results highlight the importance of tonic inhibition mediated by GABAA receptors, loss of which triggers a form of homeostatic plasticity leading to a change in the magnitude of a voltage-independent K + conductance that maintains normal neuronal behaviour.
Abstract: Many neurons receive a continuous, or 'tonic', synaptic input, which increases their membrane conductance, and so modifies the spatial and temporal integration of excitatory signals. In cerebellar granule cells, although the frequency of inhibitory synaptic currents is relatively low, the spillover of synaptically released GABA (gamma-aminobutyric acid) gives rise to a persistent conductance mediated by the GABA A receptor that also modifies the excitability of granule cells. Here we show that this tonic conductance is absent in granule cells that lack the alpha6 and delta-subunits of the GABAA receptor. The response of these granule cells to excitatory synaptic input remains unaltered, owing to an increase in a 'leak' conductance, which is present at rest, with properties characteristic of the two-pore-domain K+ channel TASK-1 (refs 9,10,11,12). Our results highlight the importance of tonic inhibition mediated by GABAA receptors, loss of which triggers a form of homeostatic plasticity leading to a change in the magnitude of a voltage-independent K + conductance that maintains normal neuronal behaviour.

571 citations


Authors

Showing all 19431 results

NameH-indexPapersCitations
Robert J. Lefkowitz214860147995
Ronald M. Evans199708166722
Tony Hunter175593124726
Marc G. Caron17367499802
Mark Gerstein168751149578
Timothy A. Springer167669122421
Harvey F. Lodish165782101124
Ira Pastan1601286110069
Bruce N. Ames158506129010
Philip Cohen154555110856
Gerald M. Rubin152382115248
Ashok Kumar1515654164086
Kim Nasmyth14229459231
Kenneth M. Yamada13944672136
Harold E. Varmus13749676320
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

96% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

96% related

Wellcome Trust Sanger Institute
9.6K papers, 1.2M citations

94% related

National Institutes of Health
297.8K papers, 21.3M citations

94% related

Scripps Research Institute
32.8K papers, 2.9M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20239
202265
20211,222
20201,165
20191,082
2018945