scispace - formally typeset
Search or ask a question

Showing papers by "Lancaster University published in 2020"


Book
Georges Aad1, E. Abat2, Jalal Abdallah3, Jalal Abdallah4  +3029 moreInstitutions (164)
23 Feb 2020
TL;DR: The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper, where a brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.
Abstract: The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.

3,111 citations



Journal ArticleDOI
22 May 2020-BMJ
TL;DR: In study participants, mortality was high, independent risk factors were increasing age, male sex, and chronic comorbidity, including obesity, and the importance of pandemic preparedness and the need to maintain readiness to launch research studies in response to outbreaks is shown.
Abstract: Objective To characterise the clinical features of patients admitted to hospital with coronavirus disease 2019 (covid-19) in the United Kingdom during the growth phase of the first wave of this outbreak who were enrolled in the International Severe Acute Respiratory and emerging Infections Consortium (ISARIC) World Health Organization (WHO) Clinical Characterisation Protocol UK (CCP-UK) study, and to explore risk factors associated with mortality in hospital. Design Prospective observational cohort study with rapid data gathering and near real time analysis. Setting 208 acute care hospitals in England, Wales, and Scotland between 6 February and 19 April 2020. A case report form developed by ISARIC and WHO was used to collect clinical data. A minimal follow-up time of two weeks (to 3 May 2020) allowed most patients to complete their hospital admission. Participants 20 133 hospital inpatients with covid-19. Main outcome measures Admission to critical care (high dependency unit or intensive care unit) and mortality in hospital. Results The median age of patients admitted to hospital with covid-19, or with a diagnosis of covid-19 made in hospital, was 73 years (interquartile range 58-82, range 0-104). More men were admitted than women (men 60%, n=12 068; women 40%, n=8065). The median duration of symptoms before admission was 4 days (interquartile range 1-8). The commonest comorbidities were chronic cardiac disease (31%, 5469/17 702), uncomplicated diabetes (21%, 3650/17 599), non-asthmatic chronic pulmonary disease (18%, 3128/17 634), and chronic kidney disease (16%, 2830/17 506); 23% (4161/18 525) had no reported major comorbidity. Overall, 41% (8199/20 133) of patients were discharged alive, 26% (5165/20 133) died, and 34% (6769/20 133) continued to receive care at the reporting date. 17% (3001/18 183) required admission to high dependency or intensive care units; of these, 28% (826/3001) were discharged alive, 32% (958/3001) died, and 41% (1217/3001) continued to receive care at the reporting date. Of those receiving mechanical ventilation, 17% (276/1658) were discharged alive, 37% (618/1658) died, and 46% (764/1658) remained in hospital. Increasing age, male sex, and comorbidities including chronic cardiac disease, non-asthmatic chronic pulmonary disease, chronic kidney disease, liver disease and obesity were associated with higher mortality in hospital. Conclusions ISARIC WHO CCP-UK is a large prospective cohort study of patients in hospital with covid-19. The study continues to enrol at the time of this report. In study participants, mortality was high, independent risk factors were increasing age, male sex, and chronic comorbidity, including obesity. This study has shown the importance of pandemic preparedness and the need to maintain readiness to launch research studies in response to outbreaks. Study registration ISRCTN66726260.

2,459 citations


Journal ArticleDOI
B. P. Abbott1, R. Abbott1, T. D. Abbott2, Sheelu Abraham3  +1271 moreInstitutions (145)
TL;DR: In 2019, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9 and the Virgo detector was also taking data that did not contribute to detection due to a low SINR but were used for subsequent parameter estimation as discussed by the authors.
Abstract: On 2019 April 25, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9. The Virgo detector was also taking data that did not contribute to detection due to a low signal-to-noise ratio, but were used for subsequent parameter estimation. The 90% credible intervals for the component masses range from to if we restrict the dimensionless component spin magnitudes to be smaller than 0.05). These mass parameters are consistent with the individual binary components being neutron stars. However, both the source-frame chirp mass and the total mass of this system are significantly larger than those of any other known binary neutron star (BNS) system. The possibility that one or both binary components of the system are black holes cannot be ruled out from gravitational-wave data. We discuss possible origins of the system based on its inconsistency with the known Galactic BNS population. Under the assumption that the signal was produced by a BNS coalescence, the local rate of neutron star mergers is updated to 250-2810.

1,189 citations


Journal ArticleDOI
Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1334 moreInstitutions (150)
TL;DR: In this paper, the authors reported the observation of a compact binary coalescence involving a 222 −243 M ⊙ black hole and a compact object with a mass of 250 −267 M ⋆ (all measurements quoted at the 90% credible level) The gravitational-wave signal, GW190814, was observed during LIGO's and Virgo's third observing run on 2019 August 14 at 21:10:39 UTC and has a signal-to-noise ratio of 25 in the three-detector network.
Abstract: We report the observation of a compact binary coalescence involving a 222–243 M ⊙ black hole and a compact object with a mass of 250–267 M ⊙ (all measurements quoted at the 90% credible level) The gravitational-wave signal, GW190814, was observed during LIGO's and Virgo's third observing run on 2019 August 14 at 21:10:39 UTC and has a signal-to-noise ratio of 25 in the three-detector network The source was localized to 185 deg2 at a distance of ${241}_{-45}^{+41}$ Mpc; no electromagnetic counterpart has been confirmed to date The source has the most unequal mass ratio yet measured with gravitational waves, ${0112}_{-0009}^{+0008}$, and its secondary component is either the lightest black hole or the heaviest neutron star ever discovered in a double compact-object system The dimensionless spin of the primary black hole is tightly constrained to ≤007 Tests of general relativity reveal no measurable deviations from the theory, and its prediction of higher-multipole emission is confirmed at high confidence We estimate a merger rate density of 1–23 Gpc−3 yr−1 for the new class of binary coalescence sources that GW190814 represents Astrophysical models predict that binaries with mass ratios similar to this event can form through several channels, but are unlikely to have formed in globular clusters However, the combination of mass ratio, component masses, and the inferred merger rate for this event challenges all current models of the formation and mass distribution of compact-object binaries

913 citations


Journal ArticleDOI
Jens Kattge1, Gerhard Bönisch2, Sandra Díaz3, Sandra Lavorel  +751 moreInstitutions (314)
TL;DR: The extent of the trait data compiled in TRY is evaluated and emerging patterns of data coverage and representativeness are analyzed to conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements.
Abstract: Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.

882 citations


Journal ArticleDOI
R. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1332 moreInstitutions (150)
TL;DR: It is inferred that the primary black hole mass lies within the gap produced by (pulsational) pair-instability supernova processes, with only a 0.32% probability of being below 65 M⊙, which can be considered an intermediate mass black hole (IMBH).
Abstract: On May 21, 2019 at 03:02:29 UTC Advanced LIGO and Advanced Virgo observed a short duration gravitational-wave signal, GW190521, with a three-detector network signal-to-noise ratio of 14.7, and an estimated false-alarm rate of 1 in 4900 yr using a search sensitive to generic transients. If GW190521 is from a quasicircular binary inspiral, then the detected signal is consistent with the merger of two black holes with masses of 85_{-14}^{+21} M_{⊙} and 66_{-18}^{+17} M_{⊙} (90% credible intervals). We infer that the primary black hole mass lies within the gap produced by (pulsational) pair-instability supernova processes, with only a 0.32% probability of being below 65 M_{⊙}. We calculate the mass of the remnant to be 142_{-16}^{+28} M_{⊙}, which can be considered an intermediate mass black hole (IMBH). The luminosity distance of the source is 5.3_{-2.6}^{+2.4} Gpc, corresponding to a redshift of 0.82_{-0.34}^{+0.28}. The inferred rate of mergers similar to GW190521 is 0.13_{-0.11}^{+0.30} Gpc^{-3} yr^{-1}.

876 citations


Posted ContentDOI
24 Jan 2020-medRxiv
TL;DR: Using a transmission model, a basic reproductive number is estimated for Wuhan coronavirus (2019-nCoV) and it is estimated that 58-76% of transmissions must be prevented to stop increasing.
Abstract: Since first identified, the epidemic scale of the recently emerged novel coronavirus (2019-nCoV) in Wuhan, China, has increased rapidly, with cases arising across China and other countries and regions. using a transmission model, we estimate a basic reproductive number of 3.11 (95%CI, 2.39-4.13); 58-76% of transmissions must be prevented to stop increasing; Wuhan case ascertainment of 5.0% (3.6-7.4); 21022 (11090-33490) total infections in Wuhan 1 to 22 January.

855 citations


Journal ArticleDOI
TL;DR: In patients admitted to hospital with COVID-19, lopinavir–ritonavir was not associated with reductions in 28-day mortality, duration of hospital stay, or risk of progressing to invasive mechanical ventilation or death.

531 citations


Journal ArticleDOI
Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1330 moreInstitutions (149)
TL;DR: In this article, the authors reported the observation of gravitational waves from a binary-black-hole coalescence during the first two weeks of LIGO and Virgo's third observing run.
Abstract: We report the observation of gravitational waves from a binary-black-hole coalescence during the first two weeks of LIGO’s and Virgo’s third observing run. The signal was recorded on April 12, 2019 at 05∶30∶44 UTC with a network signal-to-noise ratio of 19. The binary is different from observations during the first two observing runs most notably due to its asymmetric masses: a ∼30 M⊙ black hole merged with a ∼8 M⊙ black hole companion. The more massive black hole rotated with a dimensionless spin magnitude between 0.22 and 0.60 (90% probability). Asymmetric systems are predicted to emit gravitational waves with stronger contributions from higher multipoles, and indeed we find strong evidence for gravitational radiation beyond the leading quadrupolar order in the observed signal. A suite of tests performed on GW190412 indicates consistency with Einstein’s general theory of relativity. While the mass ratio of this system differs from all previous detections, we show that it is consistent with the population model of stellar binary black holes inferred from the first two observing runs.

507 citations


Journal ArticleDOI
TL;DR: COVID-19 infections and deaths among HCWs follow that of the general population around the world, and the need for universal guidelines for testing and reporting of infections in HCWs is highlighted.
Abstract: Objectives To estimate COVID-19 infections and deaths in healthcare workers (HCWs) from a global perspective during the early phases of the pandemic. Design Systematic review. Methods Two parallel searches of academic bibliographic databases and grey literature were undertaken until 8 May 2020. Governments were also contacted for further information where possible. There were no restrictions on language, information sources used, publication status and types of sources of evidence. The AACODS checklist or the National Institutes of Health study quality assessment tools were used to appraise each source of evidence. Outcome measures Publication characteristics, country-specific data points, COVID-19-specific data, demographics of affected HCWs and public health measures employed. Results A total of 152 888 infections and 1413 deaths were reported. Infections were mainly in women (71.6%, n=14 058) and nurses (38.6%, n=10 706), but deaths were mainly in men (70.8%, n=550) and doctors (51.4%, n=525). Limited data suggested that general practitioners and mental health nurses were the highest risk specialities for deaths. There were 37.2 deaths reported per 100 infections for HCWs aged over 70 years. Europe had the highest absolute numbers of reported infections (119 628) and deaths (712), but the Eastern Mediterranean region had the highest number of reported deaths per 100 infections (5.7). Conclusions COVID-19 infections and deaths among HCWs follow that of the general population around the world. The reasons for gender and specialty differences require further exploration, as do the low rates reported in Africa and India. Although physicians working in certain specialities may be considered high risk due to exposure to oronasal secretions, the risk to other specialities must not be underestimated. Elderly HCWs may require assigning to less risky settings such as telemedicine or administrative positions. Our pragmatic approach provides general trends, and highlights the need for universal guidelines for testing and reporting of infections in HCWs. © Author(s) (or their employer(s)) 2020.

Posted ContentDOI
28 Apr 2020-medRxiv
TL;DR: The largest detailed description of COVID-19 in Europe is presented, demonstrating the importance of pandemic preparedness and the need to maintain readiness to launch research studies in response to outbreaks.
Abstract: Structured abstract Objective To characterize the clinical features of patients with severe COVID-19 in the UK. Design Prospective observational cohort study with rapid data gathering and near real-time analysis, using a pre-approved questionnaire adopted by the WHO. Setting 166 UK hospitals between 6 th February and 18 th April 2020. Participants 16,749 people with COVID-19. Interventions No interventions were performed, but with consent samples were taken for research purposes. Many participants were co-enrolled in other interventional studies and clinical trials. Results The median age was 72 years [IQR 57, 82; range 0, 104], the median duration of symptoms before admission was 4 days [IQR 1,8] and the median duration of hospital stay was 7 days [IQR 4,12]. The commonest comorbidities were chronic cardiac disease (29%), uncomplicated diabetes (19%), non-asthmatic chronic pulmonary disease (19%) and asthma (14%); 47% had no documented reported comorbidity. Increased age and comorbidities including obesity were associated with a higher probability of mortality. Distinct clusters of symptoms were found: 1. respiratory (cough, sputum, sore throat, runny nose, ear pain, wheeze, and chest pain); 2. systemic (myalgia, joint pain and fatigue); 3. enteric (abdominal pain, vomiting and diarrhoea). Overall, 49% of patients were discharged alive, 33% have died and 17% continued to receive care at date of reporting. 17% required admission to High Dependency or Intensive Care Units; of these, 31% were discharged alive, 45% died and 24% continued to receive care at the reporting date. Of those receiving mechanical ventilation, 20% were discharged alive, 53% died and 27% remained in hospital. Conclusions We present the largest detailed description of COVID-19 in Europe, demonstrating the importance of pandemic preparedness and the need to maintain readiness to launch research studies in response to outbreaks. Trial documentation Available at https://isaric4c.net/protocols . Ethical approval in England and Wales (13/SC/0149), and Scotland (20/SS/0028). ISRCTN (pending).

Journal ArticleDOI
Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1329 moreInstitutions (150)
TL;DR: The GW190521 signal is consistent with a binary black hole (BBH) merger source at redshift 0.13-0.30 Gpc-3 yr-1.8 as discussed by the authors.
Abstract: The gravitational-wave signal GW190521 is consistent with a binary black hole (BBH) merger source at redshift 0.8 with unusually high component masses, 85-14+21 M o˙ and 66-18+17 M o˙, compared to previously reported events, and shows mild evidence for spin-induced orbital precession. The primary falls in the mass gap predicted by (pulsational) pair-instability supernova theory, in the approximate range 65-120 M o˙. The probability that at least one of the black holes in GW190521 is in that range is 99.0%. The final mass of the merger (142-16+28 M o˙) classifies it as an intermediate-mass black hole. Under the assumption of a quasi-circular BBH coalescence, we detail the physical properties of GW190521's source binary and its post-merger remnant, including component masses and spin vectors. Three different waveform models, as well as direct comparison to numerical solutions of general relativity, yield consistent estimates of these properties. Tests of strong-field general relativity targeting the merger-ringdown stages of the coalescence indicate consistency of the observed signal with theoretical predictions. We estimate the merger rate of similar systems to be 0.13-0.11+0.30 Gpc-3 yr-1. We discuss the astrophysical implications of GW190521 for stellar collapse and for the possible formation of black holes in the pair-instability mass gap through various channels: via (multiple) stellar coalescences, or via hierarchical mergers of lower-mass black holes in star clusters or in active galactic nuclei. We find it to be unlikely that GW190521 is a strongly lensed signal of a lower-mass black hole binary merger. We also discuss more exotic possible sources for GW190521, including a highly eccentric black hole binary, or a primordial black hole binary.

Journal ArticleDOI
TL;DR: A quantitative synthesis of longterm biodiversity trends across Europe is reported, showing how, despite overall increase in biodiversity metric and stability in abundance, trends differ between regions, ecosystem types, and taxa.
Abstract: Local biodiversity trends over time are likely to be decoupled from global trends, as local processes may compensate or counteract global change. We analyze 161 long-term biological time series (15–91 years) collected across Europe, using a comprehensive dataset comprising ~6,200 marine, freshwater and terrestrial taxa. We test whether (i) local long-term biodiversity trends are consistent among biogeoregions, realms and taxonomic groups, and (ii) changes in biodiversity correlate with regional climate and local conditions. Our results reveal that local trends of abundance, richness and diversity differ among biogeoregions, realms and taxonomic groups, demonstrating that biodiversity changes at local scale are often complex and cannot be easily generalized. However, we find increases in richness and abundance with increasing temperature and naturalness as well as a clear spatial pattern in changes in community composition (i.e. temporal taxonomic turnover) in most biogeoregions of Northern and Eastern Europe.

Posted ContentDOI
29 Apr 2020-medRxiv
TL;DR: An eXplainable Deep Learning approach to detect COVID-19 from computer tomography - Scan images is proposed and demonstrates that the proposed approach is able to surpass the other published results which were using standard Deep Neural Network in terms of performance.
Abstract: The COVID-19 disease has widely spread all over the world since the beginning of 2020. On January 30, 2020 the World Health Organization (WHO) declared a global health emergency. At the time of writing this paper the number of infected about 2 million people worldwide and took over 125,000 lives, the advanced public health systems of European countries as well as of USA were overwhelmed. In this paper, we propose an eXplainable Deep Learning approach to detect COVID-19 from computer tomography (CT) - Scan images. The rapid detection of any COVID-19 case is of supreme importance to ensure timely treatment. From a public health perspective, rapid patient isolation is also extremely important to curtail the rapid spread of the disease. From this point of view the proposed method offers an easy to use and understand tool to the front-line medics. It is of huge importance not only the statistical accuracy and other measures, but also the ability to understand and interpret how the decision was made. The results demonstrate that the proposed approach is able to surpass the other published results which were using standard Deep Neural Network in terms of performance. Moreover, it produce highly interpretable results which may be helpful for the early detection of the disease by specialists.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the detection latency of superconducting nanowire single-photon detectors (SNSPDs) and showed that the key to achieving low timing jitter is the use of materials with low latency.
Abstract: Improvements in temporal resolution of single-photon detectors enable increased data rates and transmission distances for both classical and quantum optical communication systems, higher spatial resolution in laser ranging, and observation of shorter-lived fluorophores in biomedical imaging. In recent years, superconducting nanowire single-photon detectors (SNSPDs) have emerged as the most efficient time-resolving single-photon-counting detectors available in the near-infrared, but understanding of the fundamental limits of timing resolution in these devices has been limited due to a lack of investigations into the timescales involved in the detection process. We introduce an experimental technique to probe the detection latency in SNSPDs and show that the key to achieving low timing jitter is the use of materials with low latency. By using a specialized niobium nitride SNSPD we demonstrate that the system temporal resolution can be as good as 2.6 ± 0.2 ps for visible wavelengths and 4.3 ± 0.2 ps at 1,550 nm. Knowledge about detection latency provides a guideline to reduce the timing jitter of niobium nitride superconducting nanowire single-photon detectors. A timing jitter of 2.6 ps at visible wavelength and 4.3 ps at 1,550 nm is achieved.

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Dale Charles Abbott3, Ovsat Abdinov4  +2934 moreInstitutions (199)
TL;DR: In this article, a search for the electroweak production of charginos and sleptons decaying into final states with two electrons or muons is presented, based on 139.fb$^{-1}$ of proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider at
Abstract: A search for the electroweak production of charginos and sleptons decaying into final states with two electrons or muons is presented. The analysis is based on 139 fb$^{-1}$ of proton–proton collisions recorded by the ATLAS detector at the Large Hadron Collider at $\sqrt{s}=13$ $\text {TeV}$. Three R-parity-conserving scenarios where the lightest neutralino is the lightest supersymmetric particle are considered: the production of chargino pairs with decays via either W bosons or sleptons, and the direct production of slepton pairs. The analysis is optimised for the first of these scenarios, but the results are also interpreted in the others. No significant deviations from the Standard Model expectations are observed and limits at 95% confidence level are set on the masses of relevant supersymmetric particles in each of the scenarios. For a massless lightest neutralino, masses up to 420 $\text {Ge}\text {V}$ are excluded for the production of the lightest-chargino pairs assuming W-boson-mediated decays and up to 1 $\text {TeV}$ for slepton-mediated decays, whereas for slepton-pair production masses up to 700 $\text {Ge}\text {V}$ are excluded assuming three generations of mass-degenerate sleptons.

Journal ArticleDOI
TL;DR: A cross-scale analysis of paired-stressor effects on biological variables of European freshwater ecosystems shows that in 39% of cases, significant effects were limited to single stressors, with nutrient enrichment being the most important of these in lakes.
Abstract: Climate and land-use change drive a suite of stressors that shape ecosystems and interact to yield complex ecological responses (that is, additive, antagonistic and synergistic effects). We know little about the spatial scales relevant for the outcomes of such interactions and little about effect sizes. These knowledge gaps need to be filled to underpin future land management decisions or climate mitigation interventions for protecting and restoring freshwater ecosystems. This study combines data across scales from 33 mesocosm experiments with those from 14 river basins and 22 cross-basin studies in Europe, producing 174 combinations of paired-stressor effects on a biological response variable. Generalized linear models showed that only one of the two stressors had a significant effect in 39% of the analysed cases, 28% of the paired-stressor combinations resulted in additive effects and 33% resulted in interactive (antagonistic, synergistic, opposing or reversal) effects. For lakes, the frequencies of additive and interactive effects were similar for all spatial scales addressed, while for rivers these frequencies increased with scale. Nutrient enrichment was the overriding stressor for lakes, with effects generally exceeding those of secondary stressors. For rivers, the effects of nutrient enrichment were dependent on the specific stressor combination and biological response variable. These results vindicate the traditional focus of lake restoration and management on nutrient stress, while highlighting that river management requires more bespoke management solutions.

Journal ArticleDOI
TL;DR: A comparative analysis of machine learning and soft computing models to predict the COVID-19 outbreak as an alternative to susceptible–infected–recovered (SIR) and susceptible-exposed-infectious-removed (SEIR) models suggests machine learning as an effective tool to model the outbreak.
Abstract: Several outbreak prediction models for COVID-19 are being used by officials around the world to make informed decisions and enforce relevant control measures. Among the standard models for COVID-19 global pandemic prediction, simple epidemiological and statistical models have received more attention by authorities, and these models are popular in the media. Due to a high level of uncertainty and lack of essential data, standard models have shown low accuracy for long-term prediction. Although the literature includes several attempts to address this issue, the essential generalization and robustness abilities of existing models need to be improved. This paper presents a comparative analysis of machine learning and soft computing models to predict the COVID-19 outbreak as an alternative to susceptible–infected–recovered (SIR) and susceptible-exposed-infectious-removed (SEIR) models. Among a wide range of machine learning models investigated, two models showed promising results (i.e., multi-layered perceptron, MLP; and adaptive network-based fuzzy inference system, ANFIS). Based on the results reported here, and due to the highly complex nature of the COVID-19 outbreak and variation in its behavior across nations, this study suggests machine learning as an effective tool to model the outbreak. This paper provides an initial benchmarking to demonstrate the potential of machine learning for future research. This paper further suggests that a genuine novelty in outbreak prediction can be realized by integrating machine learning and SEIR models.

Journal ArticleDOI
TL;DR: An estimated 12 million people worldwide have experienced HDV infection, with higher prevalence in certain geographic areas and populations, and was higher in injecting drug users, haemodialysis recipients, men who have sex with men, commercial sex workers, and those with HCV or HIV.

Journal ArticleDOI
TL;DR: The current contact tracing strategy within the UK is likely to identify a sufficient proportion of infected individuals such that subsequent spread could be prevented, although the ultimate success will depend on the rapid detection of cases and isolation of contacts.
Abstract: Objective Contact tracing is a central public health response to infectious disease outbreaks, especially in the early stages of an outbreak when specific treatments are limited. Importation of novel coronavirus (COVID-19) from China and elsewhere into the UK highlights the need to understand the impact of contact tracing as a control measure. Design Detailed survey information on social encounters from over 5800 respondents is coupled to predictive models of contact tracing and control. This is used to investigate the likely efficacy of contact tracing and the distribution of secondary cases that may go untraced. Results Taking recent estimates for COVID-19 transmission we predict that under effective contact tracing less than 1 in 6 cases will generate any subsequent untraced infections, although this comes at a high logistical burden with an average of 36 individuals traced per case. Changes to the definition of a close contact can reduce this burden, but with increased risk of untraced cases; we find that tracing using a contact definition requiring more than 4 hours of contact is unlikely to control spread. Conclusions The current contact tracing strategy within the UK is likely to identify a sufficient proportion of infected individuals such that subsequent spread could be prevented, although the ultimate success will depend on the rapid detection of cases and isolation of contacts. Given the burden of tracing a large number of contacts to find new cases, there is the potential the system could be overwhelmed if imports of infection occur at a rapid rate.

Journal ArticleDOI
TL;DR: This synthesis identifies several important drivers of variability in effectiveness of plantings: pollination services declined exponentially with distance from plantings, and perennial and older flower strips with higher flowering plant diversity enhanced pollination more effectively.
Abstract: Floral plantings are promoted to foster ecological intensification of agriculture through provisioning of ecosystem services. However, a comprehensive assessment of the effectiveness of different floral plantings, their characteristics and consequences for crop yield is lacking. Here we quantified the impacts of flower strips and hedgerows on pest control (18 studies) and pollination services (17 studies) in adjacent crops in North America, Europe and New Zealand. Flower strips, but not hedgerows, enhanced pest control services in adjacent fields by 16% on average. However, effects on crop pollination and yield were more variable. Our synthesis identifies several important drivers of variability in effectiveness of plantings: pollination services declined exponentially with distance from plantings, and perennial and older flower strips with higher flowering plant diversity enhanced pollination more effectively. These findings provide promising pathways to optimise floral plantings to more effectively contribute to ecosystem service delivery and ecological intensification of agriculture in the future.

Journal ArticleDOI
TL;DR: An Evolutionary Tourism Paradigm is developed, which is based on biological epistemology and theory to address questions in post-COVID-19 tourism research, and its utility for future research endeavors on the Coronavirus pandemic is empirically demonstrated.

Journal ArticleDOI
Lasse Folkersen1, Stefan Gustafsson2, Qin Wang3, Qin Wang4, Daniel Hvidberg Hansen, Åsa K Hedman5, Åsa K Hedman6, Andrew J. Schork7, Andrew J. Schork8, Karen Page6, Daria V. Zhernakova9, Yang Wu10, James E. Peters, Niclas Eriksson2, Sarah E Bergen11, Thibaud Boutin12, Andrew D. Bretherick12, Stefan Enroth2, Anette Kalnapenkis13, Jesper R. Gådin1, Bianca E. Suur1, Yan Chen1, Ljubica Perisic Matic1, Jeremy D. Gale6, Julie Lee6, Weidong Zhang6, Amira Quazi6, Mika Ala-Korpela, Seung Hoan Choi14, Annique Claringbould9, John Danesh, George Davey Smith15, Federico De Masi, Sölve Elmståhl16, Gunnar Engström16, Eric B. Fauman6, Céline Fernandez16, Lude Franke9, Paul W. Franks16, Vilmantas Giedraitis17, Chris Haley12, Anders Hamsten1, Andres Ingason7, Åsa Johansson2, Peter K. Joshi18, Lars Lind19, Cecilia M. Lindgren, Steven A. Lubitz14, Steven A. Lubitz20, Tom Palmer21, Erin Macdonald-Dunlop18, Martin Magnusson, Olle Melander16, Karl Michaëlsson19, Andrew P. Morris, Reedik Mägi13, Michael W. Nagle6, Peter M. Nilsson16, Jan Nilsson16, Marju Orho-Melander16, Ozren Polasek22, Bram P. Prins23, Erik Pålsson24, Ting Qi10, Marketa Sjögren16, Johan Sundström25, Johan Sundström17, Praveen Surendran, Urmo Võsa13, Thomas Werge7, Rasmus Wernersson, Harm-Jan Westra, Jian Yang, Alexandra Zhernakova, Johan Ärnlöv1, Jingyuan Fu9, J. Gustav Smith16, Tõnu Esko13, Tõnu Esko14, Caroline Hayward12, Ulf Gyllensten2, Mikael Landén24, Agneta Siegbahn17, James F. Wilson12, James F. Wilson18, Lars Wallentin17, Adam S. Butterworth, Michael V. Holmes26, Michael V. Holmes27, Erik Ingelsson28, Anders Mälarstig6, Anders Mälarstig1 
16 Oct 2020
TL;DR: The utility of large-scale mapping of the genetics of the proteome is demonstrated and pQTLs are provided as a resource for future precision studies of circulating proteins in human health.
Abstract: Circulating proteins are vital in human health and disease and are frequently used as biomarkers for clinical decision-making or as targets for pharmacological intervention. Here, we map and replicate protein quantitative trait loci (pQTL) for 90 cardiovascular proteins in over 30,000 individuals, resulting in 451 pQTLs for 85 proteins. For each protein, we further perform pathway mapping to obtain trans-pQTL gene and regulatory designations. We substantiate these regulatory findings with orthogonal evidence for trans-pQTLs using mouse knockdown experiments (ABCA1 and TRIB1) and clinical trial results (chemokine receptors CCR2 and CCR5), with consistent regulation. Finally, we evaluate known drug targets, and suggest new target candidates or repositioning opportunities using Mendelian randomization. This identifies 11 proteins with causal evidence of involvement in human disease that have not previously been targeted, including EGF, IL-16, PAPPA, SPON1, F3, ADM, CASP-8, CHI3L1, CXCL16, GDF15 and MMP-12. Taken together, these findings demonstrate the utility of large-scale mapping of the genetics of the proteome and provide a resource for future precision studies of circulating proteins in human health.

Journal ArticleDOI
TL;DR: This is the first-known data-driven application that utilizes the GPR with ARD kernel to perform battery calendar aging prognosis and shows good generalization ability and accurate prediction results for calendar aging under various storage conditions.
Abstract: Battery calendar aging prediction is of extreme importance for developing durable electric vehicles. This article derives machine learning-enabled calendar aging prediction for lithium-ion batteries. Specifically, the Gaussian process regression (GPR) technique is employed to capture the underlying mapping among capacity, storage temperature, and state-of-charge. By modifying the isotropic kernel function with an automatic relevance determination (ARD) structure, high relevant input features can be effectively extracted to improve prediction accuracy and robustness. Experimental battery calendar aging data from nine storage cases are utilized for model training, validation, and comparison, which is more meaningful and practical than using the data from a single condition. Illustrative results demonstrate that the proposed GPR model with ARD Matern32 (M32) kernel outperforms other counterparts and can achieve reliable prediction results for all storage cases. Even for the partial-data training test, multistep prediction test, and accelerated aging training test, the proposed ARD-based GPR model is still capable of excavating the useful features, therefore offering good generalization ability and accurate prediction results for calendar aging under various storage conditions. This is the first-known data-driven application that utilizes the GPR with ARD kernel to perform battery calendar aging prognosis.

Journal ArticleDOI
TL;DR: This work demonstrates that bilby produces reliable results for simulated gravitational-wave signals from compact binary mergers, and verify that it accurately reproduces results reported for the 11 GWTC-1 signals.
Abstract: Gravitational waves provide a unique tool for observational astronomy. While the first LIGO–Virgo catalogue of gravitational-wave transients (GWTC-1) contains 11 signals from black hole and neutron star binaries, the number of observations is increasing rapidly as detector sensitivity improves. To extract information from the observed signals, it is imperative to have fast, flexible, and scalable inference techniques. In a previous paper, we introduced bilby: a modular and user-friendly Bayesian inference library adapted to address the needs of gravitational-wave inference. In this work, we demonstrate that bilby produces reliable results for simulated gravitational-wave signals from compact binary mergers, and verify that it accurately reproduces results reported for the 11 GWTC-1 signals. Additionally, we provide configuration and output files for all analyses to allow for easy reproduction, modification, and future use. This work establishes that bilby is primed and ready to analyse the rapidly growing population of compact binary coalescence gravitational-wave signals.

Journal ArticleDOI
Juliette Alimena1, James Baker Beacham2, Martino Borsato3, Yangyang Cheng4  +213 moreInstitutions (105)
TL;DR: In this paper, the authors present a survey of the current state of LLP searches at the Large Hadron Collider (LHC) and chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the high-luminosity LHC.
Abstract: Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton–proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments—as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEX-b, and FASER—to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the high-luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity 'dark showers', highlighting opportunities for expanding the LHC reach for these signals.

Journal ArticleDOI
09 Jul 2020-Nature
TL;DR: An integrated performance modelling approach is used to make an initial techno-economic assessment for 2050, quantifying how CDR potential and costs vary among nations in relation to business-as-usual energy policies and policies consistent with limiting future warming to 2 degrees Celsius.
Abstract: Enhanced silicate rock weathering (ERW), deployable with croplands, has potential use for atmospheric carbon dioxide (CO2) removal (CDR), which is now necessary to mitigate anthropogenic climate change1. ERW also has possible co-benefits for improved food and soil security, and reduced ocean acidification2–4. Here we use an integrated performance modelling approach to make an initial techno-economic assessment for 2050, quantifying how CDR potential and costs vary among nations in relation to business-as-usual energy policies and policies consistent with limiting future warming to 2 degrees Celsius5. China, India, the USA and Brazil have great potential to help achieve average global CDR goals of 0.5 to 2 gigatonnes of carbon dioxide (CO2) per year with extraction costs of approximately US$80–180 per tonne of CO2. These goals and costs are robust, regardless of future energy policies. Deployment within existing croplands offers opportunities to align agriculture and climate policy. However, success will depend upon overcoming political and social inertia to develop regulatory and incentive frameworks. We discuss the challenges and opportunities of ERW deployment, including the potential for excess industrial silicate materials (basalt mine overburden, concrete, and iron and steel slag) to obviate the need for new mining, as well as uncertainties in soil weathering rates and land–ocean transfer of weathered products. A detailed assessment of the techno-economic potential of enhanced rock weathering on croplands identifies national CO2 removal potentials, costs and engineering challenges if it were to be scaled up to help meet ambitious global CO2 removal targets.

Journal ArticleDOI
TL;DR: Slum residents’ ability to seek healthcare for non-COVID-19 conditions has been reduced during lockdowns and clear communication is needed about what is available and whether infection control is in place to encourage healthcare seeking.
Abstract: Introduction With COVID-19, there is urgency for policymakers to understand and respond to the health needs of slum communities. Lockdowns for pandemic control have health, social and economic consequences. We consider access to healthcare before and during COVID-19 with those working and living in slum communities. Methods In seven slums in Bangladesh, Kenya, Nigeria and Pakistan, we explored stakeholder perspectives and experiences of healthcare access for non-COVID-19 conditions in two periods: pre-COVID-19 and during COVID-19 lockdowns. Results Between March 2018 and May 2020, we engaged with 860 community leaders, residents, health workers and local authority representatives. Perceived common illnesses in all sites included respiratory, gastric, waterborne and mosquitoborne illnesses and hypertension. Pre-COVID, stakeholders described various preventive, diagnostic and treatment services, including well-used antenatal and immunisation programmes and some screening for hypertension, tuberculosis, HIV and vectorborne disease. In all sites, pharmacists and patent medicine vendors were key providers of treatment and advice for minor illnesses. Mental health services and those addressing gender-based violence were perceived to be limited or unavailable. With COVID-19, a reduction in access to healthcare services was reported in all sites, including preventive services. Cost of healthcare increased while household income reduced. Residents had difficulty reaching healthcare facilities. Fear of being diagnosed with COVID-19 discouraged healthcare seeking. Alleviators included provision of healthcare by phone, pharmacists/drug vendors extending credit and residents receiving philanthropic or government support; these were inconsistent and inadequate. Conclusion Slum residents’ ability to seek healthcare for non-COVID-19 conditions has been reduced during lockdowns. To encourage healthcare seeking, clear communication is needed about what is available and whether infection control is in place. Policymakers need to ensure that costs do not escalate and unfairly disadvantage slum communities. Remote consulting to reduce face-to-face contact and provision of mental health and gender-based violence services should be considered.

Journal ArticleDOI
TL;DR: The different types of fire in the Amazon, their different drivers and the positive feedbacks that can lead to more fires in the region are clarified and the solutions needed to reduce the prevalence of uncontrolled or illegal fire are examined.
Abstract: This article clarifies the different types of fire in the Amazon, their different drivers and the positive feedbacks that can lead to more fires in the region. It then explores evidence regarding the peak in active fire detections in August 2019, showing that these were linked to the highest levels of deforestation since 2008. Finally, we examine the solutions needed to reduce the prevalence of uncontrolled or illegal fire in the Brazilian Amazon.