scispace - formally typeset
Search or ask a question

Showing papers by "Langley Research Center published in 2006"


Journal ArticleDOI
TL;DR: In this paper, a thermodynamically consistent damage model is proposed for the simulation of progressive delamination in composite materials under variable-mode ratio, and a constitutive equation is developed to model the initiation and propagation of delamination.

820 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the relationship between the Angstrom exponent and the mode parameters of bimodal aerosol size distributions using Mie theory calculations and Aerosol Robotic Network (AERONET) retrievals.
Abstract: Powerlaws have long been used to describe the spectral dependence of aerosol extinction, and the wavelength exponent of the aerosol extinction powerlaw is commonly referred to as the Angstrom exponent. The Angstrom exponent is often used as a qualitative indicator of aerosol particle size, with values greater than two indicating small particles associated with combustion byproducts, and values less than one indicating large particles like sea salt and dust. In this study, we investigate the relationship between the Angstrom exponent and the mode parameters of bimodal aerosol size distributions using Mie theory calculations and Aerosol Robotic Network (AERONET) retrievals. We find that Angstrom exponents based upon seven wavelengths (0.34, 0.38, 0.44, 0.5, 0.67, 0.87, and 1.02 micrometers) are sensitive to the volume fraction of aerosols with radii less then 0.6 micrometers, but not to the fine mode effective radius. The Angstrom exponent is also known to vary with wavelength, which is commonly referred to as curvature; we show how the spectral curvature can provide additional information about aerosol size distributions for intermediate values of the Angstrom exponent. Curvature also has a significant effect on the conclusions that can be drawn about two-wavelength Angstrom exponents; long wavelengths (0.67, 0.87 micrometers) are sensitive to fine mode volume fraction of aerosols but not fine mode effective radius, while short wavelengths (0.38, 0.44 micrometers) are sensitive to the fine mode effective radius but not the fine mode volume fraction.

674 citations


Journal ArticleDOI
TL;DR: DecDeconvolution Approach for the Mapping of Acoustic Sources (DAMAS) as mentioned in this paper removes beamforming characteristics from output presentations, and a unique linear system of equations accounts for reciprocal influence at different locations over the array survey region.

594 citations


Journal ArticleDOI
TL;DR: In this paper, a criterion for matrix failure of laminated composite plies in transverse tension and in-plane shear is developed by examining the mechanics of transverse matrix crack growth.
Abstract: A criterion for matrix failure of laminated composite plies in transverse tension and in-plane shear is developed by examining the mechanics of transverse matrix crack growth. Matrix cracks are assumed to initiate from manufacturing defects and can propagate within planes parallel to the fiber direction and normal to the ply mid-plane. Fracture mechanics models of cracks in unidirectional laminates, embedded plies and outer plies are used to determine the onset and direction of propagation of crack growth. The models for each ply configuration relate ply thickness and ply toughness to the corresponding in situ ply strength. Calculated results for several materials are shown to correlate well with experimental results.

388 citations


Journal ArticleDOI
TL;DR: In this article, a moderately stratified Arctic case is simulated by nineteen single-column turbulence schemes and the sensitivities of the schemes to the parameters of their turbulence closures are partially explored.
Abstract: The parameterization of the stably stratified atmospheric boundary layer is a difficult issue, having a significant impact on medium-range weather forecasts and climate integrations. To pursue this further, a moderately stratified Arctic case is simulated by nineteen single-column turbulence schemes. Statistics from a large-eddy simulation intercomparison made for the same case by eleven different models are used as a guiding reference. The single-column parameterizations include research and operational schemes from major forecast and climate research centres. Results from first-order schemes, a large number of turbulence kinetic energy closures, and other models were used. There is a large spread in the results; in general, the operational schemes mix over a deeper layer than the research schemes, and the turbulence kinetic energy and other higher-order closures give results closer to the statistics obtained from the large-eddy simulations. The sensitivities of the schemes to the parameters of their turbulence closures are partially explored.

323 citations


Book ChapterDOI
01 Jan 2006
TL;DR: The Judd-Ofelt theory of the intensities of rare earth ions was proposed by Wybourne as discussed by the authors, who suggested that the coincidence of discovery was indicative that the time was right for the solution of the problem.
Abstract: previous ideas and forming a complete picture. So it was in August 1962 when there appeared in the literature, simultaneously and independently, two identical formulations of a theory. One by Brian R. Judd at the University of California at Berkeley and the other by a Ph.D. student, George S. Ofelt, at the Johns Hopkins University in Baltimore. Judd and Ofelt had never met personally, and were not aware of each other’s interest in the intensities of rare earth ions in solids. While there are some differences in the two formulations, the approach and the assumptions used to arrive at the final result are remarkably similar. The titles of the two articles reflect a thought along similar lines. Judd referred to Optical Absorption, while Ofelt referred to Crystal Spectra, and each to Intensities of Rare-Earth Ions. The formulations as originally published by Judd and Ofelt came to be known as the Judd-Ofelt theory of the intensities of rare earth ions. Regarding these publications, the late Professor Brian G. Wybourne has said, “I suggest that the coincidence of discovery was indicative that the time was right for the solution of the problem” [1]. In the light of the advancement in the understanding of complex atomic spectra in the quarter century preceding the 1962 publications of Judd and Ofelt, this suggestion of Wybourne is based on very sound reasoning. The rare earths comprise Y, Sc, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. The last 15 make up the lanthanide series. Most of these elements were discovered over a period of time stretching from the late 18th century to the early 20th century. Promethium (Pm) was the last to be discovered in 1947 at Oak Ridge National Laboratory. So, with the exception of Promethium, all the rare earths were discovered in the span of a little more than a century. Part of the reason why they are called rare earths is two-fold. First, they are very difficult to chemically extract from the earth. Second, they do not exist in nature in high abundance. In the universe, the rare earths are approximately 10 6 times less abundant than the

273 citations


Journal ArticleDOI
TL;DR: In this paper, the authors reported a method to actively align SWNTs in a polymer matrix, which permits control over the degree of alignment of the SWNT without the side effects of shear alignment.
Abstract: While high shear alignment has been shown to improve the mechanical properties of single-wall carbon nanotube (SWNT)-polymer composites, this method does not allow for control over the electrical and dielectric properties of the composite and of- ten results in degradation of these properties. Here, we report a novel method to actively align SWNTs in a polymer matrix, which permits control over the degree of alignment of the SWNTs without the side effects of shear alignment. In this process, SWNTs were aligned via AC field-induced dipolar interactions among the nanotubes in a liquid matrix followed by immobilization by photopolymerization under continued application of the electric field. Alignment of SWNTs was controlled as a function of magnitude, frequency, and application time of the applied electric field. The degree of SWNT alignment was assessed using optical microscopy and polarized Raman spectroscopy, and the morphol- ogy of the aligned nanocomposites was investigated by high-resolution scanning electron microscopy. The structure of the field induced aligned SWNTs was intrinsically different from that of shear aligned SWNTs. In the present work, SWNTs are not only aligned along the field, but also migrate laterally to form thick, aligned SWNT percolative col- umns between the electrodes. The actively aligned SWNTs amplify the electrical and dielectric properties of the composite. All of these properties of the aligned nanocomposites exhibited anisotropic characteristics, which were controllable by tuning the applied field parameters. V C 2006 Wiley Periodicals, Inc.* J Polym Sci Part B: Polym Phys 44: 1751-1762, 2006

272 citations


Journal ArticleDOI
TL;DR: The methodology is based on the maximum a posteriori estimate, which mathematically requires the minimization of the difference between observed spectral radiances and a nonlinear model of radiative transfer of the atmospheric state subject to the constraint that the estimated state must be consistent with an a priori probability distribution for that state.
Abstract: We describe the approach for the estimation of the atmospheric state, e.g., temperature, water, ozone, from calibrated, spectral radiances measured from the Tropospheric Emission Spectrometer (TES) onboard the Aura spacecraft. The methodology is based on the maximum a posteriori estimate, which mathematically requires the minimization of the difference between observed spectral radiances and a nonlinear model of radiative transfer of the atmospheric state subject to the constraint that the estimated state must be consistent with an a priori probability distribution for that state. The minimization techniques employed here are based on the trust-region Levenberg-Marquardt algorithm. An analysis of the errors for this estimate include smoothing, random, spectroscopic, "cross-state", representation, and systematic errors. In addition, several metrics and diagnostics are introduced that assess the resolution, quality, and statistical significance of the retrievals. We illustrate this methodology for the retrieval of atmospheric and surface temperature, water vapor, and ozone over the Gulf of Mexico on November 3, 2004.

267 citations


Journal ArticleDOI
TL;DR: In this paper, a ballistic reentry vehicle experiment called HyShot was devised to achieve supersonic combustion in flight above Mach 7.5 using a double wedge intake and two back-to-back constant area combustors.
Abstract: The development of scramjet propulsion for alternative launch and payload delivery capabilities has been composed largely of ground experiments for the last 40 years. With the goal of validating the use of short duration ground test facilities, a ballistic reentry vehicle experiment called HyShot was devised to achieve supersonic combustion in flight above Mach 7.5. It consisted of a double wedge intake and two back-to-back constant area combustors; one supplied with hydrogen fuel at an equivalence ratio of 0.34 and the other unfueled. Of the two flights conducted, HyShot 1 failed to reach the desired altitude due to booster failure, whereas HyShot 2 successfully accomplished both the desired trajectory and satisfactory scramjet operation. Postflight data analysis of HyShot 2 confirmed the presence of supersonic combustion during the approximately 3 s test window at altitudes between 35 and 29 km. Reasonable correlation between flight and some preflight shock tunnel tests was observed.

260 citations


Proceedings ArticleDOI
05 Jun 2006
TL;DR: In this article, an implicit unfactored SSOR algorithm has been added to the overset Navier-Stokes CFD code OVERFLOW 2 for unsteady and moving body applications.
Abstract: An implicit unfactored SSOR algorithm has been added to the overset Navier-Stokes CFD code OVERFLOW 2 for unsteady and moving body applications. The HLLEM and HLLC third-order spatial upwind convective flux models have been added for high-speed flow applications. A generalized upwind transport equation has been added for solution of the two-equation turbulence models and the species equations. The generalized transport equation is solved using an unfactored SSOR implicit algorithm. Three hybrid RANS/DES turbulence models have been added for unsteady flow applications. Wall function boundary conditions that include compressibility and heat transfer effects have been also been added to OVERFLOW 2.

259 citations


Journal ArticleDOI
TL;DR: In this paper, a radiative transfer model intercomparison between the forcings computed by the radiative parameterizations of AOGCMs and by benchmark line-by-line (LBL) codes is presented.
Abstract: The radiative effects from increased concentrations of well-mixed greenhouse gases (WMGHGs) represent the most significant and best understood anthropogenic forcing of the climate system. The most comprehensive tools for simulating past and future climates influenced by WMGHGs are fully coupled atmosphere-ocean general circulation models (AOGCMs). Because of the importance of WMGHGs as forcing agents it is essential that AOGCMs compute the radiative forcing by these gases as accurately as possible. We present the results of a radiative transfer model intercomparison between the forcings computed by the radiative parameterizations of AOGCMs and by benchmark line-by-line (LBL) codes. The comparison is focused on forcing by CO2, CH4, N2O, CFC-11, CFC-12, and the increased H2O expected in warmer climates. The models included in the intercomparison include several LBL codes and most of the global models submitted to the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). In general, the LBL models are in excellent agreement with each other. However, in many cases, there are substantial discrepancies among the AOGCMs and between the AOGCMs and LBL codes. In some cases this is because the AOGCMs neglect particular absorbers, in particular the near-infrared effects of CH4 and N2O, while in others it is due to the methods for modeling the radiative processes. The biases in the AOGCM forcings are generally largest at the surface level. We quantify these differences and discuss the implications for interpreting variations in forcing and response across the multimodel ensemble of AOGCM simulations assembled for the IPCC AR4.

Journal ArticleDOI
TL;DR: In this paper, the effects of dust storms on cloud properties and Radiative Forcing (RF) are analyzed over Northwestern China from April 2001 to June 2004 using data collected by the MODerate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) instruments on the Aqua and Terra satellites.
Abstract: [1] The effects of dust storms on cloud properties and Radiative Forcing (RF) are analyzed over Northwestern China from April 2001 to June 2004 using data collected by the MODerate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) instruments on the Aqua and Terra satellites. On average, ice cloud effective particle diameter, optical depth and ice water path of cirrus clouds under dust polluted conditions are 11%, 32.8%, and 42% less, respectively, than those derived from ice clouds in dust-free atmospheric environments. Due to changes in cloud microphysics, the instantaneous net RF is increased from −161.6 W/m2 for dust-free clouds to −118.6 W/m2 for dust-contaminated clouds.

Journal ArticleDOI
TL;DR: In this paper, the semi-direct effects of dust aerosols are analyzed over eastern Asia using 2 years (June 2002 to June 2004) of data from the Clouds and the Earth s Radiant Energy System (CERES) scanning radiometer and MODerate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite, and 18 years (1984 to 2001) of International Satellite Cloud Climatology Project (ISCCP) data.
Abstract: The semi-direct effects of dust aerosols are analyzed over eastern Asia using 2 years (June 2002 to June 2004) of data from the Clouds and the Earth s Radiant Energy System (CERES) scanning radiometer and MODerate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite, and 18 years (1984 to 2001) of International Satellite Cloud Climatology Project (ISCCP) data The results show that the water path of dust-contaminated clouds is considerably smaller than that of dust-free clouds The mean ice water path (IWP) and liquid water path (LWP) of dusty clouds are less than their dust-free counterparts by 237% and 498%, respectively The long-term statistical relationship derived from ISCCP also confirms that there is significant negative correlation between dust storm index and ISCCP cloud water path These results suggest that dust aerosols warm clouds, increase the evaporation of cloud droplets and further reduce cloud water path, the so-called semi-direct effect The semi-direct effect may play a role in cloud development over arid and semi-arid areas of East Asia and contribute to the reduction of precipitation

Journal ArticleDOI
26 Jul 2006-Polymer
TL;DR: In this article, the effect of functionalization of carbon nanotubes on the thermal conductivity of nanocomposites has been studied using a multi-scale modeling approach, and the results predict that grafting linear hydrocarbon chains to the surface of a single wall carbon nanoteub with covalent chemical bonds should result in a significant increase in the thermal performance of these nanocom composites.

Journal ArticleDOI
TL;DR: The INTEX-A field mission was conducted in the summer of 2004 (1 July to 15 August 2004) over North America (NA) and the Atlantic in cooperation with multiple national and international partners as part of a consortium called ICARTT as mentioned in this paper.
Abstract: [1] The INTEX-A field mission was conducted in the summer of 2004 (1 July to 15 August 2004) over North America (NA) and the Atlantic in cooperation with multiple national and international partners as part of a consortium called ICARTT. The main goals of INTEX-A were to (1) characterize the composition of the troposphere over NA, (2) characterize the outflow of pollution from NA and determine its chemical evolution during transatlantic transport, (3) validate satellite observations of tropospheric composition, (4) quantitatively relate atmospheric concentrations of gases and aerosols with their sources and sinks, and (5) investigate aerosol properties and their radiative effects. INTEX-A primarily relied on instrumented DC-8 and J-31 aircraft platforms to achieve its objectives. The DC-8 was equipped to measure detailed gas and aerosol composition and provided sufficient range and altitude capability to coordinate activities with distant partners and to sample the entire midlatitude troposphere. The J-31 was specifically focused on radiative effects of clouds and aerosols and operated largely in the Gulf of Maine. Satellite products along with meteorological and 3-D chemical transport model forecasts were integrated into the flight planning process. Intercomparisons were performed to quantify the accuracy of data and to create a unified data set. Satellite validation activities principally focused on Terra (MOPITT, MODIS, and MISR), Aqua (AIRS and MODIS) and Envisat (SCIAMACHY) to validate observations of CO, NO2, HCHO, H2O, and aerosol. Persistent fires in Alaska and NW Canada offered opportunities to quantify emissions from fires and study the transport and evolution of biomass burning plumes. Contrary to expectations, several pollution plumes of Asian origin, frequently mixed with stratospheric air, were sampled over NA. Quasi-Lagrangian sampling was successfully carried out to study chemical aging of plumes during transport over the Atlantic. Lightning NOx source was found to be far larger than anticipated and provided a major source of error in model simulations. The composition of the upper troposphere was significantly perturbed by influences from surface pollution and lightning. Drawdown of CO2 was characterized over NA and its atmospheric abundance related to terrestrial sources and sinks. INTEX-A observations provide a comprehensive data set to test models and evaluate major pathways of pollution transport over NA and the Atlantic. This overview provides a context within which the present and future INTEX-A/ICARTT publications can be understood.

Journal ArticleDOI
TL;DR: In this article, an automated observatory for measuring atmospheric column abundances of CO_2 and O_2 using near-infrared spectra of the Sun obtained with a high spectral resolution Fourier Transform Spectrometer (FTS) was developed.
Abstract: We have developed an automated observatory for measuring atmospheric column abundances of CO_2 and O_2 using near-infrared spectra of the Sun obtained with a high spectral resolution Fourier Transform Spectrometer (FTS). This is the first dedicated laboratory in a new network of ground-based observatories named the Total Carbon Column Observing Network. This network will be used for carbon cycle studies and validation of spaceborne column measurements of greenhouse gases. The observatory was assembled in Pasadena, California, and then permanently deployed to northern Wisconsin during May 2004. It is located in the heavily forested Chequamegon National Forest at the WLEF Tall Tower site, 12 km east of Park Falls, Wisconsin. Under clear sky conditions, ∼0.1% measurement precision is demonstrated for the retrieved column CO_2 abundances. During the Intercontinental Chemical Transport Experiment–North America and CO_2 Boundary Layer Regional Airborne Experiment campaigns in summer 2004, the DC-8 and King Air aircraft recorded eight in situ CO_2 profiles over the WLEF site. Comparison of the integrated aircraft profiles and CO_2 column abundances shows a small bias (∼2%) but an excellent correlation.

Journal ArticleDOI
TL;DR: In this article, a molecular-dynamics model for crack propagation under steady-state conditions is developed to analyze intergranular fracture along a flat 99 [1 1 0] symmetric tilt grain boundary in aluminum.
Abstract: A traction-displacement relationship that may be embedded into a cohesive zone model for microscale problems of intergranular fracture is extracted from atomistic molecular-dynamics simulations. A molecular-dynamics model for crack propagation under steady-state conditions is developed to analyze intergranular fracture along a flat 99 [1 1 0] symmetric tilt grain boundary in aluminum. Under hydrostatic tensile load, the simulation reveals asymmetric crack propagation in the two opposite directions along the grain boundary. In one direction, the crack propagates in a brittle manner by cleavage with very little or no dislocation emission, and in the other direction, the propagation is ductile through the mechanism of deformation twinning. This behavior is consistent with the Rice criterion for cleavage vs. dislocation blunting transition at the crack tip. The preference for twinning to dislocation slip is in agreement with the predictions of the Tadmor and Hai criterion. A comparison with finite element calculations shows that while the stress field around the brittle crack tip follows the expected elastic solution for the given boundary conditions of the model, the stress field around the twinning crack tip has a strong plastic contribution. Through the definition of a Cohesive-Zone-Volume-Element an atomistic analog to a continuum cohesive zone model element - the results from the molecular-dynamics simulation are recast to obtain an average continuum traction-displacement relationship to represent cohesive zone interaction along a characteristic length of the grain boundary interface for the cases of ductile and brittle decohesion. Keywords: Crack-tip plasticity; Cohesive zone model; Grain boundary decohesion; Intergranular fracture; Molecular-dynamics simulation

Journal ArticleDOI
TL;DR: In this paper, a new method of analyzing satellite data for tides has been developed to circumvent this difficulty, but at the expense of temporal resolution of the tidal fields, i.e., 120-day mean tidal structures are obtained.
Abstract: [1] The SABER instrument on the TIMED satellite provides unprecedented geographical coverage for the determination and study of atmospheric tides. However, the slow local time precession rate of TIMED can cause longer-term temperature variations to alias into the tidal signals. A new method of analyzing satellite data for tides has been developed to circumvent this difficulty, but at the expense of temporal resolution of the tidal fields, i.e., 120-day mean tidal structures are obtained. In this work, we apply this method to SABER temperature data to derive a series of 120-day mean tidal structures, extending between 20 and 120 km altitude, 50°S–50°N latitude, and centered on each month from September 2003 to September 2004. In addition to the migrating (Sun-synchronous) diurnal and semidiurnal tides, a number of nonmigrating tides are revealed in the SABER measurements. Some of these waves are thought to originate via nonlinear coupling between the migrating tides and the stationary planetary wave with zonal wave number s = 1. Other nonmigrating tidal components appear to be forced by latent heating due to deep tropical convection. Of the latter, the eastward propagating diurnal tide with s = 3 is dominant and is as large as the migrating diurnal tide during some months. Of particular interest is the wave-4 structure with respect to longitude that characterizes both the diurnal and semidiurnal total tidal fields. This feature is a result of the predominant wave-4 topography/land-sea longitude dependence at the surface, which is reflected in the diurnal and semidiurnal components of the latent heating rates due to deep tropical convection. The ability of the global-scale wave model (GSWM) to approximate the observed tidal fields, including the wave-4 total tidal structures, is also assessed.

Journal ArticleDOI
TL;DR: In this paper, a GPS reflectometer installed on an HC130 aircraft during the Soil Moisture Experiment 2002 (SMEX02) near Ames, Iowa was used to estimate the strength of the reflected signals by either assuming an approximately specular surface reflection or inferring the surface slope probability density and associated normalization constants.

Journal ArticleDOI
TL;DR: In this paper, the authors highlight the results from the successful Mach 7 and 10 flights of the X-43A, and the current state of hypersonic technology, and present a plan for a new program for airbreathing hypersonics.

Journal ArticleDOI
TL;DR: In this article, the authors investigate the diurnal cycle and convection during the rainy season in Amazonia and compare single-column models (SCMs) and cloud-resolving models (CRMs).
Abstract: This paper investigates daytime convective development over land and its representation in single-column models (SCMs) and cloud-resolving models (CRMs). A model intercomparison case is developed based on observations of the diurnal cycle and convection during the rainy season in Amazonia. The focus is on the 6 h period between sunrise and early afternoon which was identified in previous studies as critical for the diurnal cycle over summertime continents in numerical weather prediction and climate models. This period is characterized by the formation and growth of a well-mixed convective boundary layer from the early morning temperature and moisture profiles as the surface sensible- and latent-heat fluxes increase after sunrise. It proceeds with the formation of shallow convective clouds as the convective boundary layer deepens, and leads to the eventual transition from shallow to deep precipitating convection around local noon. To provide a benchmark for other models, a custom-designed set of simulations, applying increasing in time computational domain and decreasing spatial resolution, was executed. The SCMs reproduced the previously identified problem with premature development of deep convection, less than two hours after sunrise. The benchmark simulations suggest a possible route to improve SCMs by considering a time-evolving cumulus entrainment rate as convection evolves from shallow to deep and the cloud width increases up to an order of magnitude. The CRMs featuring horizontal grid length around 500 m are capable of capturing the qualitative aspects of the benchmark simulations, but there are significant differences among the models. Two-dimensional CRMs tend to simulate too rapid a transition from shallow to deep convection and too high a cloud cover. Copyright © 2006 Royal Meteorological Society

Journal ArticleDOI
TL;DR: In this article, the authors investigated the coupling between the troposphere and lower thermosphere due to upward-propagating tides using temperatures measured from the SABER instrument on the TIMED satellite.
Abstract: Coupling between the troposphere and lower thermosphere due to upward-propagating tides is investigated using temperatures measured from the SABER instrument on the TIMED satellite. The data analyzed here are confined to 20-120 km altitude and +/-40 deg latitude during 20 July 20 September, 2002. Apart from the migrating (sun-synchronous) tidal components, the predominant feature seen (from the satellite frame) during this period is a wave-4 structure in longitude with extrema of up to +/-40-50 K at 110 km. Amplitudes and longitudes of maxima of this structure evolve as the satellite precesses in local time, and as the wave(s) responsible for this structure vary with time. The primary wave responsible for the wave-4 pattern is the eastward-propagating diurnal tide with zonal wavenumber s=3 (DE3). Its average amplitude distribution over the interval is quasi-symmetric about the equator, similar to that of a Kelvin wave, with maximum of about 20 K at 5 deg S and 110 km. DE3 is primarily excited by latent heating due to deep tropical convection in the troposphere. It is demonstrated that existence of DE3 is intimately connected with the predominant wave-4 longitude distribution of topography and land-sea difference at low latitudes, and an analogy is drawn with the strong presence of DE1 in Mars atmosphere, the predominant wave-2 topography on Mars, and the wave-2 patterns that dominate density measurements from the Mars Global Surveyor (MGS) spacecraft near 130 km. Additional diurnal, semidiurnal and terdiurnal nonmigrating tides are also revealed in the present study. These tidal components are most likely excited by nonlinear interactions between their migrating counterparts and the stationary planetary wave with s=1 known to exist in the Southern Hemisphere during this period just prior to the austral mid-winter stratospheric warming of 2002.

Journal ArticleDOI
TL;DR: The principal component-based radiative transfer model (PCRTM) predicts the principal component (PC) scores of these quantities and has great potential for superfast one-dimensional physical retrieval and for numerical weather prediction large volume radiance data assimilation applications.
Abstract: Modern infrared satellite sensors such as the Atmospheric Infrared Sounder (AIRS), the Cross-Track Infrared Sounder (CrIS), the Tropospheric Emission Spectrometer (TES), the Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS), and the Infrared Atmospheric Sounding Interferometer (IASI) are capable of providing high spatial and spectral resolution infrared spectra To fully exploit the vast amount of spectral information from these instruments, superfast radiative transfer models are needed We present a novel radiative transfer model based on principal component analysis Instead of predicting channel radiance or transmittance spectra directly, the principal component-based radiative transfer model (PCRTM) predicts the principal component (PC) scores of these quantities This prediction ability leads to significant savings in computational time The parameterization of the PCRTM model is derived from the properties of PC scores and instrument line-shape functions The PCRTM is accurate and flexible Because of its high speed and compressed spectral information format, it has great potential for superfast one-dimensional physical retrieval and for numerical weather prediction large volume radiance data assimilation applications The model has been successfully developed for the NAST-I and AIRS instruments The PCRTM model performs monochromatic radiative transfer calculations and is able to include multiple scattering calculations to account for clouds and aerosols

Proceedings ArticleDOI
01 Jan 2006
TL;DR: This testbed will be utilized to validate modeling methods, flight dynamics characteristics, and control system designs for large transport aircraft, with the end goal being the development of technologies to reduce the fatal accident rate due to loss-of-control.
Abstract: As part of the NASA Aviation Safety Program at Langley Research Center, a dynamically scaled unmanned aerial vehicle (UAV) and associated ground based control system are being developed to investigate dynamics modeling and control of large transport vehicles in upset conditions. The UAV is a 5.5% (seven foot wingspan), twin turbine, generic transport aircraft with a sophisticated instrumentation and telemetry package. A ground based, real-time control system is located inside an operations vehicle for the research pilot and associated support personnel. The telemetry system supports over 70 channels of data plus video for the downlink and 30 channels for the control uplink. Data rates are in excess of 200 Hz. Dynamic scaling of the UAV, which includes dimensional, weight, inertial, actuation, and control system scaling, is required so that the sub-scale vehicle will realistically simulate the flight characteristics of the full-scale aircraft. This testbed will be utilized to validate modeling methods, flight dynamics characteristics, and control system designs for large transport aircraft, with the end goal being the development of technologies to reduce the fatal accident rate due to loss-of-control.


Journal ArticleDOI
TL;DR: This paper introduces an asynchronous parallel PSO algorithm that greatly improves the parallel speedup in cases where a heterogeneous parallel environment is used and/or where the analysis time depends on the design point being analyzed.
Abstract: A parallel Particle Swarm Optimization (PSO) algorithm is presented. Particle swarm optimization is a fairly recent addition to the family of non-gradient based, probabilistic search algorithms that is based on a simplified social model and is closely tied to swarming theory. Although PSO algorithms present several attractive properties to the designer, they are plagued by high computational cost as measured by elapsed time. One approach to reduce the elapsed time is to make use of coarse-grained parallelization to evaluate the design points. Previous parallel PSO algorithms were mostly implemented in a synchronous manner, where all design points within a design iteration are evaluated before the next iteration is started. This approach leads to poor parallel speedup in cases where a heterogeneous parallel environment is used and/or where the analysis time depends on the design point being analyzed. This paper introduces an asynchronous parallel PSO algorithm that greatly improves the parallel e ciency. The asynchronous algorithm is benchmarked on a cluster assembled of Apple Macintosh G5 desktop computers, using the multi-disciplinary optimization of a typical transport aircraft wing as an example.

Journal ArticleDOI
TL;DR: In this article, a global, vertical profile estimate of the HDO/H2O ratio from the Tropospheric Emission Spectrometer (TES) on the Earth Observing System (EOS) Aura satellite is presented.
Abstract: [1] We present global, vertical profile estimates of the HDO/H2O ratio from the Tropospheric Emission Spectrometer (TES) on the Earth Observing System (EOS) Aura satellite. We emphasize in this paper the estimation approach and error characterization, which are critical to determining the very small absolute concentration of HDO relative to H2O and its uncertainty. These estimates were made from TES nadir-viewing (downlooking) thermal infrared spectral radiances observed on 20 September 2004. Profiles of HDO and H2O are simultaneously estimated from the observed radiances and a profile of the ratio is then calculated. This simultaneous, or “joint,” estimate is regularized with an a priori covariance matrix that includes expected correlations between HDO and H2O. This approach minimizes errors in the profile of the HDO/H2O ratio that are due to overlapping HDO and H2O spectroscopic lines. Under clear-sky conditions in the tropics, TES estimates of the HDO/H2O ratio are sensitive to the distribution of the actual ratio between the surface and about 300 hPa with peak sensitivity at 700 hPa. The sensitivity decreases with latitude through its dependence on temperature and water amount. We estimate a precision of approximately 1% to 2% for the ratio of the HDO/H2O tropospheric densities; however, there is possibly a bias of approximately 5% in the ratio due to the HDO spectroscopic line strengths. These global observations clearly show increased isotopic depletion of water vapor at higher latitudes as well as increased depletion in the upper troposphere versus the lower troposphere.

Journal ArticleDOI
TL;DR: In this paper, the authors used aircraft data collected over North America and the Atlantic to determine the local relationships between HCHO columns and VOC emissions, calculate AMFs for HCHO retrievals, assess the errors in deriving AMFs with a chemical transport model (GEOS-Chem), and draw conclusions regarding space-based mapping of VOC emission.
Abstract: Formaldehyde (HCHO) columns measured from space provide constraints on emissions of volatile organic compounds (VOCs). Quantitative interpretation requires characterization of errors in HCHO column retrievals and relating these columns to VOC emissions. Retrieval error is mainly in the air mass factor (AMF) which relates fitted backscattered radiances to vertical columns and requires external information on HCHO, aerosols, and clouds. Here we use aircraft data collected over North America and the Atlantic to determine the local relationships between HCHO columns and VOC emissions, calculate AMFs for HCHO retrievals, assess the errors in deriving AMFs with a chemical transport model (GEOS-Chem), and draw conclusions regarding space-based mapping of VOC emissions. We show that isoprene drives observed HCHO column variability over North America; HCHO column data from space can thus be used effectively as a proxy for isoprene emission. From observed HCHO and isoprene profiles we find an HCHO molar yield from isoprene oxidation of 1.6 +/- 0.5, consistent with current chemical mechanisms. Clouds are the primary error source in the AMF calculation; errors in the HCHO vertical profile and aerosols have comparatively little effect. The mean bias and 1Q uncertainty in the GEOS-Chem AMF calculation increase from <1% and 15% for clear skies to 17% and 24% for half-cloudy scenes. With fitting errors, this gives an overall 1 Q error in HCHO satellite measurements of 25-31%. Retrieval errors, combined with uncertainties in the HCHO yield from isoprene oxidation, result in a 40% (1sigma) error in inferring isoprene emissions from HCHO satellite measurements.

Journal ArticleDOI
TL;DR: In this paper, low-speed flow separation over a wall-mounted hump, and its control using steady suction, were studied experimentally in order to generate a data set for the development and evaluation of computational methods.
Abstract: Low-speed flow separation over a wall-mounted hump, and its control using steady suction, were studied experimentally in order to generate a data set for the development and evaluation of computational methods. The baseline and controlled data sets comprised time-mean and unsteady surface pressure measurements, flowfield measurements using particle image velocimetry, and wall shear stress obtained via oil-film interferometry. In addition to the specific test cases studied, surface pressures for a wide variety of conditions were acquired for different Reynolds numbers and suction rates. Stereoscopic particle image velocimetry and oil-film flow visualization indicated that the baseline time-averaged separated flowfield was two-dimensional. With the application of control, mild three-dimensionality was evident in the spanwise variation of pressure recovery, reattachment location, and spanwise pressure fluctuations.

Journal ArticleDOI
TL;DR: In this article, an improved theoretical model of the previously developed system was formulated using the image method, thus allowing the eddy current density to be more accurately computed in addition to the development, modeled, and tested.
Abstract: When a conductive material experiences a time-varying magnetic field, eddy currents are generated in the conductor These eddy currents circulate such that they generate a magnetic field of their own, however the field generated is of opposite polarity, causing a repulsive force The time-varying magnetic field needed to produce such currents can be induced either by movement of the conductor in the field or by changing the strength or position of the source of the magnetic field In the case of a dynamic system the conductor is moving relative to the magnetic source, thus generating eddy currents that will dissipate into heat due to the resistivity of the conductor This process of the generation and dissipation of eddy current causes the system to function as a viscous damper In a previous study, the concept and theoretical model was developed for one eddy current damping system that was shown to be effective in the suppression of transverse beam vibrations The mathematical model developed to predict the amount of damping induced on the structure was shown to be accurate when the magnet was far from the beam but was less accurate for the case that the gap between the magnet and beam was small In the present study, an improved theoretical model of the previously developed system will be formulated using the image method, thus allowing the eddy current density to be more accurately computed In addition to the development of an improved model, an improved concept of the eddy current damper configuration is developed, modeled, and tested The new damper configuration adds significantly more damping to the structure than the previously implemented design and has the capability to critically damp the beam 's first bending mode The eddy current damper is a noncontacting system, thus allowing it to be easily applied and able to add significant damping to the structure without changing dynamic response Furthermore, the previous model and the improved model will lie applied to the new damper design and the enhanced accuracy of this new theoretical model will he proven