scispace - formally typeset
Search or ask a question

Showing papers by "Langley Research Center published in 2013"


Journal ArticleDOI
29 Mar 2013-Science
TL;DR: This study presents the first direct cloud and precipitation measurements showing that Saharan and Asian dust and biological aerosols probably serve as IN and play an important role in orographic precipitation processes over the western United States.
Abstract: Winter storms in California’s Sierra Nevada increase seasonal snowpack and provide critical water resources and hydropower for the state. Thus, the mechanisms influencing precipitation in this region have been the subject of research for decades. Previous studies suggest Asian dust enhances cloud ice and precipitation, whereas few studies consider biological aerosols as an important global source of ice nuclei (IN). Here, we show that dust and biological aerosols transported from as far as the Sahara were present in glaciated high-altitude clouds coincident with elevated IN concentrations and ice-induced precipitation. This study presents the first direct cloud and precipitation measurements showing that Saharan and Asian dust and biological aerosols probably serve as IN and play an important role in orographic precipitation processes over the western United States.

518 citations


Journal ArticleDOI
TL;DR: The Global Energy and Water Cycle Experiment (GEWEX) Cloud Assessment as discussed by the authors provides the first coordinated intercomparison of publicly available, standard global cloud products (gridded monthly statistics) retrieved from measurements of multispectral imagers (some with multiangle view and polarization capabilities).
Abstract: Clouds cover about 70% of Earth's surface and play a dominant role in the energy and water cycle of our planet. Only satellite observations provide a continuous survey of the state of the atmosphere over the entire globe and across the wide range of spatial and temporal scales that compose weather and climate variability. Satellite cloud data records now exceed more than 25 years; however, climate data records must be compiled from different satellite datasets and can exhibit systematic biases. Questions therefore arise as to the accuracy and limitations of the various sensors and retrieval methods. The Global Energy and Water Cycle Experiment (GEWEX) Cloud Assessment, initiated in 2005 by the GEWEX Radiation Panel (GEWEX Data and Assessment Panel since 2011), provides the first coordinated intercomparison of publicly available, standard global cloud products (gridded monthly statistics) retrieved from measurements of multispectral imagers (some with multiangle view and polarization capabilities), IR soun...

463 citations


Journal ArticleDOI
TL;DR: In this article, the authors make extensive use of the growing number of surface observations to constrain the global energy balance not only from space, but also from the surface, and combine these observations with the latest modeling efforts performed for the 5th IPCC assessment report to infer best estimates for the global mean surface radiative components.
Abstract: In the framework of the global energy balance, the radiative energy exchanges between Sun, Earth and space are now accurately quantified from new satellite missions. Much less is known about the magnitude of the energy flows within the climate system and at the Earth surface, which cannot be directly measured by satellites. In addition to satellite observations, here we make extensive use of the growing number of surface observations to constrain the global energy balance not only from space, but also from the surface. We combine these observations with the latest modeling efforts performed for the 5th IPCC assessment report to infer best estimates for the global mean surface radiative components. Our analyses favor global mean downward surface solar and thermal radiation values near 185 and 342 Wm−2, respectively, which are most compatible with surface observations. Combined with an estimated surface absorbed solar radiation and thermal emission of 161 and 397 Wm−2, respectively, this leaves 106 Wm−2 of surface net radiation available globally for distribution amongst the non-radiative surface energy balance components. The climate models overestimate the downward solar and underestimate the downward thermal radiation, thereby simulating nevertheless an adequate global mean surface net radiation by error compensation. This also suggests that, globally, the simulated surface sensible and latent heat fluxes, around 20 and 85 Wm−2 on average, state realistic values. The findings of this study are compiled into a new global energy balance diagram, which may be able to reconcile currently disputed inconsistencies between energy and water cycle estimates.

412 citations


Journal ArticleDOI
TL;DR: In this article, a monthly global gridded dataset of daytime and nighttime aerosol extinction profiles has been constructed, available as a Level 3 aerosol product, for cloud-free and all-sky conditions.
Abstract: . The CALIOP lidar, carried on the CALIPSO satellite, has been acquiring global atmospheric profiles since June 2006. This dataset now offers the opportunity to characterize the global 3-D distribution of aerosol as well as seasonal and interannual variations, and confront aerosol models with observations in a way that has not been possible before. With that goal in mind, a monthly global gridded dataset of daytime and nighttime aerosol extinction profiles has been constructed, available as a Level 3 aerosol product. Averaged aerosol profiles for cloud-free and all-sky conditions are reported separately. This 6-yr dataset characterizes the global 3-dimensional distribution of tropospheric aerosol. Vertical distributions are seen to vary with season, as both source strengths and transport mechanisms vary. In most regions, clear-sky and all-sky mean aerosol profiles are found to be quite similar, implying a lack of correlation between high semi-transparent cloud and aerosol in the lower troposphere. An initial evaluation of the accuracy of the aerosol extinction profiles is presented. Detection limitations and the representivity of aerosol profiles in the upper troposphere are of particular concern. While results are preliminary, we present evidence that the monthly-mean CALIOP aerosol profiles provide quantitative characterization of elevated aerosol layers in major transport pathways. Aerosol extinction in the free troposphere in clean conditions, where the true aerosol extinction is typically 0.001 km−1 or less, is generally underestimated, however. The work described here forms an initial global 3-D aerosol climatology which we plan to extend and improve over time.

383 citations


Journal ArticleDOI
TL;DR: In this article, a Lagrange multiplier procedure is used to objectively adjust inputs based on their uncertainties such that the computed TOA irradiance is consistent with CERES-derived irradiance to within the uncertainty.
Abstract: The estimate of surface irradiance on a global scale is possible through radiative transfer calculations using satellite-retrieved surface, cloud, and aerosol properties as input. Computed top-of-atmosphere (TOA) irradiances, however, do not necessarily agree with observation-based values, for example, from the Clouds and the Earth’s Radiant Energy System (CERES). This paper presents a method to determine surface irradiances using observational constraints of TOA irradiance from CERES. A Lagrange multiplier procedure is used to objectively adjust inputs based on their uncertainties such that the computed TOA irradiance is consistent with CERES-derived irradiance to within the uncertainty. These input adjustments are then used to determine surface irradiance adjustments. Observations by the Atmospheric Infrared Sounder (AIRS), Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), CloudSat, and Moderate Resolution Imaging Spectroradiometer (MODIS) that are a part of the NASA ...

374 citations


Journal ArticleDOI
TL;DR: The findings presented here suggest that the microbiome is a dynamic and underappreciated aspect of the upper troposphere with potentially important impacts on the hydrological cycle, clouds, and climate.
Abstract: The composition and prevalence of microorganisms in the middle-to-upper troposphere (8–15 km altitude) and their role in aerosol-cloud-precipitation interactions represent important, unresolved questions for biological and atmospheric science. In particular, airborne microorganisms above the oceans remain essentially uncharacterized, as most work to date is restricted to samples taken near the Earth’s surface. Here we report on the microbiome of low- and high-altitude air masses sampled onboard the National Aeronautics and Space Administration DC-8 platform during the 2010 Genesis and Rapid Intensification Processes campaign in the Caribbean Sea. The samples were collected in cloudy and cloud-free air masses before, during, and after two major tropical hurricanes, Earl and Karl. Quantitative PCR and microscopy revealed that viable bacterial cells represented on average around 20% of the total particles in the 0.25- to 1-μm diameter range and were at least an order of magnitude more abundant than fungal cells, suggesting that bacteria represent an important and underestimated fraction of micrometer-sized atmospheric aerosols. The samples from the two hurricanes were characterized by significantly different bacterial communities, revealing that hurricanes aerosolize a large amount of new cells. Nonetheless, 17 bacterial taxa, including taxa that are known to use C1–C4 carbon compounds present in the atmosphere, were found in all samples, indicating that these organisms possess traits that allow survival in the troposphere. The findings presented here suggest that the microbiome is a dynamic and underappreciated aspect of the upper troposphere with potentially important impacts on the hydrological cycle, clouds, and climate.

334 citations


Book
31 Jul 2013
TL;DR: In this paper, a set of failure criteria for laminated fiber-reinforced composites, denoted as LaRC04, is proposed, which are based on physical models for each failure mode and take into consideration non-linear matrix shear behavior.
Abstract: A set of three-dimensional failure criteria for laminated fiber-reinforced composites, denoted LaRC04, is proposed. The criteria are based on physical models for each failure mode and take into consideration non-linear matrix shear behaviour. The model for matrix compressive failure is based on the Mohr-Coulomb criterion and it predicts the fracture angle. Fiber kinking is triggered by an initial fiber misalignment angle and by the rotation of the fibers during compressive loading. The plane of fiber kinking is predicted by the model. LaRC04 consists of 6 expressions that can be used directly for design purposes. Several applications involving a broad range of load combinations are presented and compared to experimental data and other existing criteria. Predictions using LaRC04 correlate well with the experimental data, arguably better than most existing criteria. The good correlation seems to be attributable to the physical soundness of the underlying failure models.

329 citations


Journal ArticleDOI
TL;DR: In this article, the CERES-only (CO) and the CerES geostationary (CG) temporal interpolation methods were used to estimate the daily averaged flux between Terra and Aqua overpass times.
Abstract: The Clouds and the Earth's Radiant Energy System (CERES) instruments on board the Terra and Aqua spacecraft continue to provide an unprecedented global climate record of the earth's top-of-atmosphere (TOA) energy budget since March 2000. A critical step in determining accurate daily averaged flux involves estimating the flux between CERES Terra or Aqua overpass times. CERES employs the CERES-only (CO) and the CERES geostationary (CG) temporal interpolation methods. The CO method assumes that the cloud properties at the time of the CERES observation remain constant and that it only accounts for changes in albedo with solar zenith angle and diurnal land heating, by assuming a shape for unresolved changes in the diurnal cycle. The CG method enhances the CERES data by explicitly accounting for changes in cloud and radiation between CERES observation times using 3-hourly imager data from five geostationary (GEO) satellites. To maintain calibration traceability, GEO radiances are calibrated against Moderate Resolution Imaging Spectroradiometer (MODIS) and the derived GEO fluxes are normalized to the CERES measurements. While the regional (1 deg latitude x 1 deg longitude) monthly-mean difference between the CG and CO methods can exceed 25 W m(sub -2) over marine stratus and land convection, these regional biases nearly cancel in the global mean. The regional monthly CG shortwave (SW) and longwave (LW) flux uncertainty is reduced by 20%, whereas the daily uncertainty is reduced by 50% and 20%, respectively, over the CO method, based on comparisons with 15-min Geostationary Earth Radiation Budget (GERB) data.

325 citations


Journal ArticleDOI
TL;DR: In this article, a review of reduced order modeling techniques for geometrically nonlinear structures, more specifically those techniques that are applicable to structural models constructed using commercial finite element software, is presented.

286 citations


Journal ArticleDOI
TL;DR: A comparison technique is used to derive a new Entropy Stable Weighted Essentially Non-Oscillatory (SSWENO) finite difference method, appropriate for simulations of problems with shocks.

286 citations


Book
02 Aug 2013
TL;DR: The First ISCCP Regional Experiment (FIRE) Arctic Clouds Experiment was conducted in the Arctic during April through July, 1998 as mentioned in this paper, and the primary goal of the field experiment was to gather the data needed to examine the impact of arctic clouds on the radiation exchange between the surface, atmosphere, and space, and to study how the surface influences the evolution of boundary layer clouds.
Abstract: An overview is given of the First ISCCP Regional Experiment (FIRE) Arctic Clouds Experiment that was conducted in the Arctic during April through July, 1998. The principal goal of the field experiment was to gather the data needed to examine the impact of arctic clouds on the radiation exchange between the surface, atmosphere, and space, and to study how the surface influences the evolution of boundary layer clouds. The observations will be used to evaluate and improve climate model parameterizations of cloud and radiation processes, satellite remote sensing of cloud and surface characteristics, and understanding of cloud-radiation feedbacks in the Arctic. The experiment utilized four research aircraft that flew over surface-based observational sites in the Arctic Ocean and Barrow, Alaska. In this paper we describe the programmatic and science objectives of the project, the experimental design (including research platforms and instrumentation), conditions that were encountered during the field experiment, and some highlights of preliminary observations, modelling, and satellite remote sensing studies.

Journal ArticleDOI
TL;DR: The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission as discussed by the authors provides a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change.
Abstract: The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Systeme Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5–50 μm), the spectrum of solar radiation reflected by the Earth and its atmosphere (320–2300 nm), and radio occultation refractivity from which...

Journal ArticleDOI
TL;DR: The California Research at the Nexus of Air Quality and Climate Change (CalNex) field study was conducted throughout California in May, June, and July of 2010 as discussed by the authors to address issues simultaneously relevant to atmospheric pollution and climate change, including emission inventory assessment, atmospheric transport and dispersion, atmospheric chemical processing, and cloud-aerosol interactions and aerosol radiative effects.
Abstract: The California Research at the Nexus of Air Quality and Climate Change (CalNex) field study was conducted throughout California in May, June, and July of 2010. The study was organized to address issues simultaneously relevant to atmospheric pollution and climate change, including (1) emission inventory assessment, (2) atmospheric transport and dispersion, (3) atmospheric chemical processing, and (4) cloud-aerosol interactions and aerosol radiative effects. Measurements from networks of ground sites, a research ship, tall towers, balloon-borne ozonesondes, multiple aircraft, and satellites provided in situ and remotely sensed data on trace pollutant and greenhouse gas concentrations, aerosol chemical composition and microphysical properties, cloud microphysics, and meteorological parameters. This overview report provides operational information for the variety of sites, platforms, and measurements, their joint deployment strategy, and summarizes findings that have resulted from the collaborative analyses of the CalNex field study. Climate-relevant findings from CalNex include that leakage from natural gas infrastructure may account for the excess of observed methane over emission estimates in Los Angeles. Air-quality relevant findings include the following: mobile fleet VOC significantly declines, and NO_x emissions continue to have an impact on ozone in the Los Angeles basin; the relative contributions of diesel and gasoline emission to secondary organic aerosol are not fully understood; and nighttime NO_3 chemistry contributes significantly to secondary organic aerosol mass in the San Joaquin Valley. Findings simultaneously relevant to climate and air quality include the following: marine vessel emissions changes due to fuel sulfur and speed controls result in a net warming effect but have substantial positive impacts on local air quality.

Journal ArticleDOI
TL;DR: In this paper, the Coupled Feedback Response Analysis Method (CFRAM) is applied to decompose the annual and zonal-mean vertical temperature response within a transient 1% yr−1 CO2 increase simulation of the NCAR Community Climate System Model, version 4 (CCSM4), into individual radiative and nonradiative climate feedback process contributions.
Abstract: Polar surface temperatures are expected to warm 2–3 times faster than the global-mean surface temperature: a phenomenon referred to as polar warming amplification. Therefore, understanding the individual process contributions to the polar warming is critical to understanding global climate sensitivity. The Coupled Feedback Response Analysis Method (CFRAM) is applied to decompose the annual- and zonal-mean vertical temperature response within a transient 1% yr−1 CO2 increase simulation of the NCAR Community Climate System Model, version 4 (CCSM4), into individual radiative and nonradiative climate feedback process contributions. The total transient annual-mean polar warming amplification (amplification factor) at the time of CO2 doubling is +2.12 (2.3) and +0.94 K (1.6) in the Northern and Southern Hemisphere, respectively. Surface albedo feedback is the largest contributor to the annual-mean polar warming amplification accounting for +1.82 and +1.04 K in the Northern and Southern Hemisphere, respe...

24 Aug 2013
TL;DR: The Surface Meteorology and Solar Energy (SSE) data set as discussed by the authors contains parameters formulated for assessing and designing renewable energy systems, including solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage system, cloud information, temperature, wind, other meteorological factors, and supporting information.
Abstract: The Release 5.1 Surface meteorology and Solar Energy (SSE) data contains parameters formulated for assessing and designing renewable energy systems. Parameters fall under 11 categories including: Solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage systems, cloud information, temperature, wind, other meteorological factors, and supporting information. This latest release contains new parameters based on recommendations by the renewable energy industry and it is more accurate than previous releases. On-line plotting capabilities allow quick evaluation of potential renewable energy projects for any region of the world. The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Mission Objectives] The SSE project contains insolation and meteorology data intended to aid in the development of renewable energy systems. Collaboration between SSE and technology industries such as the Hybrid Optimization Model for Electric Renewables ( HOMER ) may aid in designing electric power systems that employ some combination of wind turbines, photovoltaic panels, or diesel generators to produce electricity. [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

Journal ArticleDOI
TL;DR: In this paper, the performance of the CALIOPLidar with Orthogonal Polarization (CALIOP) instrument on the CALIPSO satellite is compared with the results from the NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL-1) on the NASA B200 aircraft.
Abstract: . Aerosol classification products from the NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL-1) on the NASA B200 aircraft are compared with coincident V3.01 aerosol classification products from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the CALIPSO satellite. For CALIOP, aerosol classification is a key input to the aerosol retrieval, and must be inferred using aerosol loading-dependent observations and location information. In contrast, HSRL-1 makes direct measurements of aerosol intensive properties, including the lidar ratio, that provide information on aerosol type. In this study, comparisons are made for 109 underflights of the CALIOP orbit track. We find that 62% of the CALIOP marine layers and 54% of the polluted continental layers agree with HSRL-1 classification results. In addition, 80% of the CALIOP desert dust layers are classified as either dust or dusty mix byHSRL-1. However, agreement is less for CALIOP smoke (13%) and polluted dust (35%) layers. Specific case studies are examined, giving insight into the performance of the CALIOP aerosol type algorithm. In particular, we find that the CALIOP polluted dust type is overused due to an attenuation-related depolarization bias. Furthermore, the polluted dust type frequently includes mixtures of dust plus marine aerosol. Finally, we find that CALIOP's identification of internal boundaries between different aerosol types in contact with each other frequently do not reflect the actual transitions between aerosol types accurately. Based on these findings, we give recommendations which may help to improve the CALIOP aerosol type algorithms.

Journal ArticleDOI
TL;DR: Results show the promise of local wavenumber domain analysis to characterize the depth of delamination damage in composite laminates and can find application in automated vehicle health assurance systems with potential for high detection rates and greatly reduced operator effort and setup time.

Book
02 Aug 2013
TL;DR: In this article, a new set of failure criteria for fiber reinforced polymer laminates is described, based on Dvorak's fracture mechanics analyses of cracked plies and from Puck's action plane concept, which predict matrix and fiber failure accurately without requiring curvefitting parameters.
Abstract: A new set of six failure criteria for fiber reinforced polymer laminates is described. Derived from Dvorak's fracture mechanics analyses of cracked plies and from Puck's action plane concept, the physically-based criteria, denoted LaRC03, predict matrix and fiber failure accurately without requiring curve-fitting parameters. For matrix failure under transverse compression, the fracture plane is calculated by maximizing the Mohr-Coulomb effective stresses. A criterion for fiber kinking is obtained by calculating the fiber misalignment under load, and applying the matrix failure criterion in the coordinate frame of the misalignment. Fracture mechanics models of matrix cracks are used to develop a criterion for matrix in tension and to calculate the associated in-situ strengths. The LaRC03 criteria are applied to a few examples to predict failure load envelopes and to predict the failure mode for each region of the envelope. The analysis results are compared to the predictions using other available failure criteria and with experimental results. Predictions obtained with LaRC03 correlate well with the experimental results.

Journal ArticleDOI
TL;DR: The Cross-Track Infrared Sounder (CrIS) is a Fourier Transform Michelson interferometer instrument launched on board the Suomi National Polar-Orbiting Partnership (Suomi NPP) satellite on 28 October 2011 as discussed by the authors.
Abstract: [1] The Cross-Track Infrared Sounder (CrIS) is a Fourier Transform Michelson interferometer instrument launched on board the Suomi National Polar-Orbiting Partnership (Suomi NPP) satellite on 28 October 2011. CrIS provides measurements of Earth view interferograms in three infrared spectral bands at 30 cross-track positions, each with a 3 × 3 array of field of views. The CrIS ground processing software transforms the measured interferograms into calibrated and geolocated spectra in the form of Sensor Data Records (SDRs) that cover spectral bands from 650 to 1095 cm−1, 1210 to 1750 cm−1, and 2155 to 2550 cm−1 with spectral resolutions of 0.625 cm−1, 1.25 cm−1, and 2.5 cm−1, respectively. During the time since launch a team of subject matter experts from government, academia, and industry has been engaged in postlaunch CrIS calibration and validation activities. The CrIS SDR product is defined by three validation stages: Beta, Provisional, and Validated. The product reached Beta and Provisional validation stages on 19 April 2012 and 31 January 2013, respectively. For Beta and Provisional SDR data, the estimated absolute spectral calibration uncertainty is less than 3 ppm in the long-wave and midwave bands, and the estimated 3 sigma radiometric uncertainty for all Earth scenes is less than 0.3 K in the long-wave band and less than 0.2 K in the midwave and short-wave bands. The geolocation uncertainty for near nadir pixels is less than 0.4 km in the cross-track and in-track directions.

Book
31 Jul 2013
TL;DR: In this paper, a specific metaphor for the emerging field of highly automated vehicles, their interactions with human users and with other vehicles is described, and risks and opportunities to apply the metaphor to technical applications are discussed.
Abstract: Good design is not free of form. It does not necessarily happen through a mere sampling of technologies packaged together, through pure analysis, or just by following procedures. Good design begins with inspiration and a vision, a mental image of the end product, which can sometimes be described with a design metaphor. A successful example from the 20th century is the desktop metaphor, which took a real desktop as an orientation for the manipulation of electronic documents on a computer. Initially defined by Xerox, then refined by Apple and others, it could be found on almost every computer by the turn of the 20th century. This paper sketches a specific metaphor for the emerging field of highly automated vehicles, their interactions with human users and with other vehicles. In the introduction, general questions on vehicle automation are raised and related to the physical control of conventional vehicles and to the automation of some late 20th century vehicles. After some words on design metaphors, the H-Metaphor is introduced. More details of the metaphor's source are described and their application to human-machine interaction, automation and management of intelligent vehicles sketched. Finally, risks and opportunities to apply the metaphor to technical applications are discussed.

Journal ArticleDOI
TL;DR: In this article, the Lax-Wendroff theorem states that conservation law equations that are split into linear combinations of the divergence and product rule form and then discretized using any diagonal-norm skew-symmetric summation-by-parts spatial operator yield discrete operators that are conservative.

Journal ArticleDOI
TL;DR: In this article, the authors compared six large-eddy simulation (LES) models as part of CGILS to simulate sub-tropical marine low cloud sensitivity to an idealized climate change.
Abstract: Subtropical marine low cloud sensitivity to an idealized climate change is compared in six large-eddy simulation (LES) models as part of CGILS. July cloud cover is simulated at three locations over the subtropical northeast Pacific Ocean, which are typified by cold sea surface temperatures (SSTs) under well-mixed stratocumulus, cool SSTs under decoupled stratocumulus, and shallow cumulus clouds overlying warmer SSTs. The idealized climate change includes a uniform 2 K SST increase with corresponding moist-adiabatic warming aloft and subsidence changes, but no change in free-tropospheric relative humidity, surface wind speed, or CO2. For each case, realistic advective forcings and boundary conditions are generated for the control and perturbed states which each LES runs for 10 days into a quasi-steady state. For the control climate, the LESs correctly produce the expected cloud type at all three locations. With the perturbed forcings, all models simulate boundary-layer deepening due to reduced subsidence in the warmer climate, with less deepening at the warm-SST location due to regulation by precipitation. The models do not show a consistent response of liquid water path and albedo in the perturbed climate, though the majority predict cloud thickening (negative cloud feedback) at the cold-SST location and slight cloud thinning (positive cloud feedback) at the cool-SST and warm-SST locations. In perturbed climate simulations at the cold-SST location without the subsidence decrease, cloud albedo consistently decreases across the models. Thus, boundary-layer cloud feedback on climate change involves compensating thermodynamic and dynamic effects of warming and may interact with patterns of subsidence change.

Journal ArticleDOI
TL;DR: In this article, the authors evaluate the 3 km product over the Baltimore-Washington D.C., USA, corridor during the summer of 2011 by comparing with spatially dense aerosol data measured by airborne High Spectral Resolution Lidar (HSRL) and a network of 44 sun photometers (SP) spaced approximately 10 km apart, collected as part of the DISCOVER-AQ field campaign.
Abstract: . MODerate resolution Imaging Spectroradiometer (MODIS) instruments aboard the Terra and Aqua satellites have provided a rich dataset of aerosol information at a 10 km spatial scale. Although originally intended for climate applications, the air quality community quickly became interested in using the MODIS aerosol data. However, 10 km resolution is not sufficient to resolve local scale aerosol features. With this in mind, MODIS Collection 6 includes a global aerosol product with a 3 km resolution. Here, we evaluate the 3 km product over the Baltimore–Washington D.C., USA, corridor during the summer of 2011 by comparing with spatially dense aerosol data measured by airborne High Spectral Resolution Lidar (HSRL) and a network of 44 sun photometers (SP) spaced approximately 10 km apart, collected as part of the DISCOVER-AQ field campaign. The HSRL instrument shows that AOD can vary by over 0.2 within a single 10 km MODIS pixel, meaning that higher resolution satellite retrievals may help to better characterize aerosol spatial distributions in this region. Different techniques for validating a high-resolution aerosol product against SP measurements are considered. Although the 10 km product is more statistically reliable than the 3 km product, the 3 km product still performs acceptably with nearly two-thirds of MODIS/SP collocations falling within an expected error envelope with high correlation (R > 0.90), although with a high bias of ~ 0.06. The 3 km product can better resolve aerosol gradients and retrieve closer to clouds and shorelines than the 10 km product, but tends to show more noise, especially in urban areas. This urban degradation is quantified using ancillary land cover data. Overall, we show that the MODIS 3 km product adds new information to the existing set of satellite derived aerosol products and validates well over the region, but due to noise and problems in urban areas, should be treated with some degree of caution.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the PZT-Stack in a quasi-static regime and showed that the capacitance and piezoelectric coefficient were strongly dependent on the dynamic stress.
Abstract: In this paper, the interdisciplinary energy harvesting issues on piezoelectric energy harvesting were investigated using a ‘33’ mode (mechanical stress and/or electric field are in parallel to the polarization direction) lead zirconate titanate multilayer piezoelectric stack (PZT-Stack). Key energy harvesting characteristics including the generated electrical energy/power in the PZT-Stack, the mechanical to electrical energy conversion efficiency, the power delivered from the PZT-Stack to a resistive load, the electrical charge/energy transferred from the PZT-Stack to a super-capacitor were systematically addressed. Theoretical models for power generation and delivery to a resistive load were proposed and experimentally affirmed. In a quasi-static regime, 70% generated electrical powers were delivered to matched resistive loads. A 35% mechanical to electrical energy conversion efficiency, which is more than 4 times higher than other reports, for the PZT-Stack had been obtained. The generated electrical power and power density were significantly higher than those from a similar weight and size cantilever-type piezoelectric harvester in both resonance and off-resonance modes. In addition, our study indicated that the capacitance and piezoelectric coefficient of the PZT-Stack were strongly dependent on the dynamic stress. (Some figures may appear in colour only in the online journal)

Journal ArticleDOI
TL;DR: Radiometric cross-calibration of the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) sensors was performed using near-simultaneous observations over the Libya 4 pseudoinvariant calibration site in the visible and near-infrared spectral range to compensate the spectral response differences of multispectral sensors.
Abstract: To monitor land surface processes over a wide range of temporal and spatial scales, it is critical to have coordinated observations of the Earth's surface acquired from multiple spaceborne imaging sensors. However, an integrated global observation framework requires an understanding of how land surface processes are seen differently by various sensors. This is particularly true for sensors acquiring data in spectral bands whose relative spectral responses (RSRs) are not similar and thus may produce different results while observing the same target. The intrinsic offsets between two sensors caused by RSR mismatches can be compensated by using a spectral band adjustment factor (SBAF), which takes into account the spectral profile of the target and the RSR of the two sensors. The motivation of this work comes from the need to compensate the spectral response differences of multispectral sensors in order to provide a more accurate cross-calibration between the sensors. In this paper, radiometric cross-calibration of the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) sensors was performed using near-simultaneous observations over the Libya 4 pseudoinvariant calibration site in the visible and near-infrared spectral range. The RSR differences of the analogous ETM+ and MODIS spectral bands provide the opportunity to explore, understand, quantify, and compensate for the measurement differences between these two sensors. The cross-calibration was initially performed by comparing the top-of-atmosphere (TOA) reflectances between the two sensors over their lifetimes. The average percent differences in the long-term trends ranged from -5% to +6%. The RSR compensated ETM+ TOA reflectance (ETM+*) measurements were then found to agree with MODIS TOA reflectance to within 5% for all bands when Earth Observing-1 Hyperion hyperspectral data were used to produce the SBAFs. These differences were later reduced to within 1% for all bands (except band 2) by using Environmental Satellite Scanning Imaging Absorption Spectrometer for Atmospheric Cartography hyperspectral data to produce the SBAFs.

Book
07 Aug 2013
TL;DR: The GEWEX Cloud System Study (GCSS) was organized to promote development of improved parameterizations of cloud systems for use in climate and numerical weather prediction models, with an emphasis on the climate applications.
Abstract: The GEWEX Cloud System Study (GCSS; GEWEX is the Global Energy and Water Cycle Experiment) was organized to promote development of improved parameterizations of cloud systems for use in climate and numerical weather prediction models, with an emphasis on the climate applications. The strategy of GCSS is to use two distinct kinds of models to analyze and understand observations of the behavior of several different types of clouds systems. Cloud-system-resolving models (CSRMs) have high enough spatial and temporal resolutions to represent individual cloud elements, but cover a wide enough range of space and time scales to permit statistical analysis of simulated cloud systems. Results from CSRMs are compared with detailed observations, representing specific cases based on field experiments, and also with statistical composites obtained from satellite and meteorological analyses. Single-column models (SCMs) are the surgically extracted column physics of atmospheric general circulation models. SCMs are used to test cloud parameterizations in an un-coupled mode, by comparison with field data and statistical composites. In the original GCSS strategy, data is collected in various field programs and provided to the CSRM Community, which uses the data to "certify" the CSRMs as reliable tools for the simulation of particular cloud regimes, and then uses the CSRMs to develop parameterizations, which are provided to the GCM Community. We report here the results of a re-thinking of the scientific strategy of GCSS, which takes into account the practical issues that arise in confronting models with data. The main elements of the proposed new strategy are a more active role for the large-scale modeling community, and an explicit recognition of the importance of data integration.

Journal ArticleDOI
TL;DR: In this paper, the authors evaluate the annual mean radiative shortwave flux downward at the surface (RSDS) and reflected shortwave (RSUT) and radiative longwave flux upward at top of atmosphere (RLUT) from the twentieth century Coupled model intercomparison project Phase 5 (CMIP5) and Phase 3(CMIP3) simulations as well as from the NASA GEOS5 model and Modern-Era Retrospective Analysis for Research and Applications analysis.
Abstract: [1] We evaluate the annual mean radiative shortwave flux downward at the surface (RSDS) and reflected shortwave (RSUT) and radiative longwave flux upward at top of atmosphere (RLUT) from the twentieth century Coupled Model Intercomparison Project Phase 5 (CMIP5) and Phase 3 (CMIP3) simulations as well as from the NASA GEOS5 model and Modern-Era Retrospective Analysis for Research and Applications analysis. The results show that a majority of the models have significant regional biases in the annual means of RSDS, RLUT, and RSUT, with biases from −30 to 30 W m−2. While the global average CMIP5 ensemble mean biases of RSDS, RLUT, and RSUT are reduced compared to CMIP3 by about 32% (e.g., −6.9 to 2.5 W m−2), 43%, and 56%, respectively. This reduction arises from a more complete cancellation of the pervasive negative biases over ocean and newly larger positive biases over land. In fact, based on these biases in the annual mean, Taylor diagram metrics, and RMSE, there is virtually no progress in the simulation fidelity of RSDS, RLUT, and RSUT fluxes from CMIP3 to CMIP5. A persistent systematic bias in CMIP3 and CMIP5 is the underestimation of RSUT and overestimation of RSDS and RLUT in the convectively active regions of the tropics. The amount of total ice and liquid atmospheric water content in these areas is also underestimated. We hypothesize that at least a part of these persistent biases stem from the common global climate model practice of ignoring the effects of precipitating and/or convective core ice and liquid in their radiation calculations.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the mechanisms of cloud feedback in SCMs and LESs under idealized climate change perturbation, and provided a general framework to interpret SCM results: in a warmer climate, the moistening rate of the cloudy layer associated with surface-based turbulence parameterization is enhanced; together with weaker large-scale subsidence, it causes negative cloud feedback.
Abstract: CGILS—the CFMIP-GASS Intercomparison of Large Eddy Models (LESs) and single column models (SCMs)—investigates the mechanisms of cloud feedback in SCMs and LESs under idealized climate change perturbation. This paper describes the CGILS results from 15 SCMs and 8 LES models. Three cloud regimes over the subtropical oceans are studied: shallow cumulus, cumulus under stratocumulus, and well-mixed coastal stratus/stratocumulus. In the stratocumulus and coastal stratus regimes, SCMs without activated shallow convection generally simulated negative cloud feedbacks, while models with active shallow convection generally simulated positive cloud feedbacks. In the shallow cumulus alone regime, this relationship is less clear, likely due to the changes in cloud depth, lateral mixing, and precipitation or a combination of them. The majority of LES models simulated negative cloud feedback in the well-mixed coastal stratus/stratocumulus regime, and positive feedback in the shallow cumulus and stratocumulus regime. A general framework is provided to interpret SCM results: in a warmer climate, the moistening rate of the cloudy layer associated with the surface-based turbulence parameterization is enhanced; together with weaker large-scale subsidence, it causes negative cloud feedback. In contrast, in the warmer climate, the drying rate associated with the shallow convection scheme is enhanced. This causes positive cloud feedback. These mechanisms are summarized as the “NESTS” negative cloud feedback and the “SCOPE” positive cloud feedback (Negative feedback from Surface Turbulence under weaker Subsidence—Shallow Convection PositivE feedback) with the net cloud feedback depending on how the two opposing effects counteract each other. The LES results are consistent with these interpretations.

Journal ArticleDOI
TL;DR: In this article, two winter heavy haze events in Beijing that occurred in 2011 and 2012 were selected and investigated by using the ground-based remote sensing measurements, and retrieval results from a total of five haze days showed that the aerosol loading and properties during the two winter haze events were comparable.
Abstract: . With the increase in economic development over the past thirty years, many large cities in eastern and southwestern China are experiencing increased haze events and atmospheric pollution, causing significant impacts on the regional environment and even climate. However, knowledge on the aerosol physical and chemical properties in heavy haze conditions is still insufficient. In this study, two winter heavy haze events in Beijing that occurred in 2011 and 2012 were selected and investigated by using the ground-based remote sensing measurements. We used a CIMEL CE318 sun–sky radiometer to retrieve haze aerosol optical, physical and chemical properties, including aerosol optical depth (AOD), size distribution, complex refractive indices and aerosol fractions identified as black carbon (BC), brown carbon (BrC), mineral dust (DU), ammonium sulfate-like (AS) components and aerosol water content (AW). The retrieval results from a total of five haze days showed that the aerosol loading and properties during the two winter haze events were comparable. Therefore, average heavy haze property parameters were drawn to present a research case for future studies. The average AOD is about 3.0 at 440 nm, and the Angstrom exponent is 1.3 from 440 to 870 nm. The fine-mode AOD is 2.8 corresponding to a fine-mode fraction of 0.93. The coarse particles occupied a considerable volume fraction of the bimodal size distribution in winter haze events, with the mean particle radius of 0.21 and 2.9 μm for the fine and coarse modes respectively. The real part of the refractive indices exhibited a relatively flat spectral behavior with an average value of 1.48 from 440 to 1020 nm. The imaginary part showed spectral variation, with the value at 440 nm (about 0.013) higher than the other three wavelengths (about 0.008 at 675 nm). The aerosol composition retrieval results showed that volume fractions of BC, BrC, DU, AS and AW are 1, 2, 49, 15 and 33%, respectively, on average for the investigated haze events. The preliminary uncertainty estimation and comparison of these remote sensing results with in situ BC and PM2.5 measurements are also presented in the paper.

Journal ArticleDOI
TL;DR: In this paper, the authors compare the aerosol optical depths (AOD) retrieved from backscatter measurements of the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud Aerosol LIDar Infrared Pathfinder Satellite Observations satellite with coincident AERONET measurements.
Abstract: We compare the aerosol optical depths (AOD) retrieved from backscatter measurements of the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) satellite with coincident Aerosol Robotic Network (AERONET) measurements. Overpass coincidence criteria of +/- 2 h and within a 40 km radius are satisfied at least once at 149 globally distributed AERONET sites from 2006 to 2010. Most data pairs (>80%) use AERONET measurements acquired +/- 30 min of the overpass. We examine the differences in AOD estimates between CALIOP and AERONET for various aerosol, environmental, and geographic conditions. Results show CALIOP AOD are lower than AERONET AOD especially at low optical depths as measured by AERONET (500 nm AOD 0.1. Differences in AOD between CALIOP and AERONET are possibly due to cloud contamination, scene inhomogeneity, instrument view angle differences, CALIOP retrieval errors, and detection limits. Comparison of daytime to nighttime number of 5 km 60m (60m in the vertical) features detected by CALIOP show that there are 20% more aerosol features at night. We find that CALIPSO and AERONET do not agree on the cloudiness of scenes. Of the scenes that meet the above coincidence criteria, CALIPSO finds clouds in more than 45% of the coincident atmospheric columns AERONET classifies as clear.