scispace - formally typeset
Search or ask a question
Institution

Langley Research Center

FacilityHampton, Virginia, United States
About: Langley Research Center is a facility organization based out in Hampton, Virginia, United States. It is known for research contribution in the topics: Mach number & Wind tunnel. The organization has 15945 authors who have published 37602 publications receiving 821623 citations. The organization is also known as: NASA Langley & NASA Langley Research Center.


Papers
More filters
Journal ArticleDOI
TL;DR: The LMCA-ARTICLE-2006-016 DOI:10.1029/2002JD003195View record in Web of Science Record created on 2006-06-01, modified on 2016-08-08 as mentioned in this paper.
Abstract: Reference LMCA-ARTICLE-2006-016doi:10.1029/2002JD003195View record in Web of Science Record created on 2006-06-01, modified on 2016-08-08

160 citations

Journal ArticleDOI
TL;DR: In this paper, the X ray fluorescence spectrometers of the Viking lander were used to determine absolute elemental concentrations of the Martian regolith, which required gain drift adjustments, subtraction of background components and use of a mathematical response model with adjustable parameters set by prelaunch measurements on selected rock standards.
Abstract: Ten samples of the Martian regolith have been analyzed by the Viking lander X ray fluorescence spectrometers. Because of high-stability electronics, inclusion of calibration targets, and special data encoding within the instruments the quality of the analyses performed on Mars is closely equivalent to that attainable with the same instruments operated in the laboratory. Determination of absolute elemental concentrations requires gain drift adjustments, subtraction of background components, and use of a mathematical response model with adjustable parameters set by prelaunch measurements on selected rock standards. Bulk fines at both Viking landing sites are quite similar in composition, implying that a chemically and mineralogically homogeneous regolith covers much of the surface of the planet. Important differences between samples include a higher sulfur content in what appear to be duricrust fragments than in fines and a lower iron content in fines taken from beneath large rocks than those taken from unprotected surface material. Further extensive reduction of these data will allow more precise and more accurate analytical numbers to be determined and thus a more comprehensive understanding of elemental trends between samples.

160 citations

19 Aug 1999
TL;DR: In this paper, the authors developed global maps of surface emissivity for the broadband LW region, the thermal infrared window region (8-12 micron), and 12 narrow LW spectral bands.
Abstract: Accurate accounting of surface emissivity is essential for the retrievals of surface temperature from remote sensing measurements, and for the computations of longwave (LW) radiation budget of the Earth''s surface. Past studies of the above topics assumed that emissivity for all surface types, and across the entire LW spectrum is equal to unity. There is strong evidence, however, that emissivity of many surface materials is significantly lower than unity, and varies considerably across the LW spectrum. We have developed global maps of surface emissivity for the broadband LW region, the thermal infrared window region (8-12 micron), and 12 narrow LW spectral bands. The 17 surface types defined by the International Geosphere Biosphere Programme (IGBP) were adopted as such, and an additional (18th) surface type was introduced to represent tundra-like surfaces. Laboratory measurements of spectral reflectances of 10 different surface materials were converted to corresponding emissivities. The 10 surface materials were then associated with 18 surface types. Emissivities for the 18 surface types were first computed for each of the 12 narrow spectral bands. Emissivities for the broadband and the window region were then constituted from the spectral bnad values by weighting them with Planck function energy distribution.

160 citations

Journal ArticleDOI
TL;DR: The 2B-FLXHR as discussed by the authors is a standard product that provides high vertical resolution profiles of radiative fluxes and atmospheric heating rates on the global scale, which is used to quantify the radiative impact of clouds on global and regional scales.
Abstract: [1] Among the largest uncertainties in quantifying the radiative impacts of clouds are those that arise from the inherent difficulty in precisely specifying the vertical distribution of cloud optical properties using passive satellite measurements. Motivated by the need to address this problem, CloudSat was launched in April 2006 carrying into orbit the first millimeter wavelength cloud radar to be flown in space. Retrieved profiles of liquid and ice cloud microphysical properties from this Cloud Profiling Radar form the basis of the CloudSat's fluxes and heating rates algorithm, 2B-FLXHR, a standard product that provides high vertical resolution profiles of radiative fluxes and atmospheric heating rates on the global scale. This paper describes the physical basis of the 2B-FLXHR algorithm and documents the first year of 2B-FLXHR data in the context of assessing the radiative impact of clouds on global and regional scales. The analysis confirms that cloud contributions to atmospheric radiative heating are small on the global scale because of a cancelation of the much larger regional heating from high clouds in the tropics and cooling from low clouds at higher latitudes. Preliminary efforts to assess the accuracy of the 2B-FLXHR product using coincident CERES data demonstrate that outgoing longwave fluxes are better represented than those in the shortwave but both exhibit good agreement with CERES on scales longer than 5 days and larger than 5°. Colocated CALIPSO observations of clouds that are undetected by CloudSat further indicate that while thin cirrus can introduce modest uncertainty in the products, low clouds that are obscured by ground clutter represent a far more important source of error in the current 2B-FLXHR product that must be addressed in subsequent versions of the algorithm.

160 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the impact of missing or discarded high-resolution data on the integrity of the Baseline Surface Radiation Network (BSRN) radiation monthly averages by investigating the impact on monthly means due to the frequency of data gaps caused by missing or discard high time resolution data.
Abstract: . The integrity of the Baseline Surface Radiation Network (BSRN) radiation monthly averages are assessed by investigating the impact on monthly means due to the frequency of data gaps caused by missing or discarded high time resolution data. The monthly statistics, especially means, are considered to be important and useful values for climate research, model performance evaluations and for assessing the quality of satellite (time- and space-averaged) data products. The study investigates the spread in different algorithms that have been applied for the computation of monthly means from 1-min values. The paper reveals that the computation of monthly means from 1-min observations distinctly depends on the method utilized to account for the missing data. The intra-method difference generally increases with an increasing fraction of missing data. We found that a substantial fraction of the radiation fluxes observed at BSRN sites is either missing or flagged as questionable. The percentage of missing data is 4.4%, 13.0%, and 6.5% for global radiation, direct shortwave radiation, and downwelling longwave radiation, respectively. Most flagged data in the shortwave are due to nighttime instrumental noise and can reasonably be set to zero after correcting for thermal offsets in the daytime data. The study demonstrates that the handling of flagged data clearly impacts on monthly mean estimates obtained with different methods. We showed that the spread of monthly shortwave fluxes is generally clearly higher than for downwelling longwave radiation. Overall, BSRN observations provide sufficient accuracy and completeness for reliable estimates of monthly mean values. However, the value of future data could be further increased by reducing the frequency of data gaps and the number of outliers. It is shown that two independent methods for accounting for the diurnal and seasonal variations in the missing data permit consistent monthly means to within less than 1 W m−2 in most cases. The authors suggest using a standardized method for the computation of monthly means which addresses diurnal variations in the missing data in order to avoid a mismatch of future published monthly mean radiation fluxes from BSRN. The application of robust statistics would probably lead to less biased results for data records with frequent gaps and/or flagged data and outliers. The currently applied empirical methods should, therefore, be completed by the development of robust methods.

160 citations


Authors

Showing all 16015 results

NameH-indexPapersCitations
Daniel J. Jacob16265676530
Donald R. Blake11872749697
Veerabhadran Ramanathan10030147561
Raja Parasuraman9140241455
Robert W. Platt8863831918
James M. Russell8769129383
Daniel J. Inman8391837920
Antony Jameson7947431518
Ya-Ping Sun7927728722
Patrick M. Crill7922820850
Richard B. Miles7875925239
Patrick Minnis7749023403
Robert W. Talbot7729719783
Raphael T. Haftka7677328111
Jack E. Dibb7534418399
Network Information
Related Institutions (5)
Ames Research Center
35.8K papers, 1.3M citations

89% related

German Aerospace Center
26.7K papers, 553.3K citations

89% related

Air Force Research Laboratory
24.6K papers, 493.8K citations

87% related

United States Naval Research Laboratory
45.4K papers, 1.5M citations

85% related

Jet Propulsion Laboratory
14.3K papers, 548.1K citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202335
202286
2021571
2020540
2019669
2018797