scispace - formally typeset
Search or ask a question
Institution

Langley Research Center

FacilityHampton, Virginia, United States
About: Langley Research Center is a facility organization based out in Hampton, Virginia, United States. It is known for research contribution in the topics: Mach number & Wind tunnel. The organization has 15945 authors who have published 37602 publications receiving 821623 citations. The organization is also known as: NASA Langley & NASA Langley Research Center.


Papers
More filters
Book ChapterDOI
01 Jan 1990
TL;DR: In this article, the onset and growth of delamination in AS4/PEEK, a tough thermoplastic matrix composite, was characterized for mode 1 and mode 2 loadings, using the Double Cantilever Beam (DCB) and the End Notched Flexure (ENF) test specimens.
Abstract: Composite materials often fail by delamination. The onset and growth of delamination in AS4/PEEK, a tough thermoplastic matrix composite, was characterized for mode 1 and mode 2 loadings, using the Double Cantilever Beam (DCB) and the End Notched Flexure (ENF) test specimens. Delamination growth per fatigue cycle, da/dN, was related to strain energy release rate, G, by means of a power law. However, the exponents of these power laws were too large for them to be adequately used as a life prediction tool. A small error in the estimated applied loads could lead to large errors in the delamination growth rates. Hence strain energy release rate thresholds, G sub th, below which no delamination would occur were also measured. Mode 1 and 2 threshold G values for no delamination growth were found by monitoring the number of cycles to delamination onset in the DCB and ENF specimens. The maximum applied G for which no delamination growth had occurred until at least 1,000,000 cycles was considered the threshold strain energy release rate. Comments are given on how testing effects, facial interference or delamination front damage, may invalidate the experimental determination of the constants in the expression.

139 citations

Journal ArticleDOI
TL;DR: Three permanent magnet arrays were mounted on each Viking lander: a strong array fixed on a photometric reference test chart on top of the landers; and two arrays, one strong and one weak, incorporated into the backhoe of the surface sampler as discussed by the authors.
Abstract: Three permanent magnet arrays were mounted on each Viking lander: a strong array fixed on a photometric reference test chart on top of the landers; and two arrays, one strong and one weak, incorporated into the backhoe of the surface sampler. Some or all of the magnetic particles detected could be highly magnetic unoxidized mineral grains (metallic Fe, magnetite, pyrrhotite) forming the core beneath a reddish coating of limonite or hematite; or grains composed of gamma-Fe2O3, with and without other iron oxides; or igneous rock (or mineral particles) which consist of an admixture of unweathered silicate material or minerals with a significant fraction of highly magnetic phase, again with a reddish coating; they could be also igneous rock or mineral particles, intrinsically nonmagnetic, but having a reddish coating containing gamma-Fe2O3; or clay mineral particles which contain and/or are coated with Fe2O3, of which a substantial fraction is in the gamma-Fe2O3 form.

139 citations

Journal ArticleDOI
TL;DR: In this article, simple mixed models are developed for use in the geometrically nonlinear analysis of deep arches, where the fundamental unknowns comprise the six internal forces and generalized displacements of the arch, and the element characteristic arrays are obtained by using Hellinger-Reissner mixed variational principle.
Abstract: Simple mixed models are developed for use in the geometrically nonlinear analysis of deep arches. A total Lagrangian description of the arch deformation is used, the analytical formulation being based on a form of the nonlinear deep arch theory with the effects of transverse shear deformation included. The fundamental unknowns comprise the six internal forces and generalized displacements of the arch, and the element characteristic arrays are obtained by using Hellinger-Reissner mixed variational principle. The polynomial interpolation functions employed in approximating the forces are one degree lower than those used in approximating the displacements, and the forces are discontinuous at the interelement boundaries. Attention is given to the equivalence between the mixed models developed herein and displacement models based on reduced integration of both the transverse shear and extensional energy terms. The advantages of mixed models over equivalent displacement models are summarized. Numerical results are presented to demonstrate the high accuracy and effectiveness of the mixed models developed and to permit a comparison of their performance with that of other mixed models reported in the literature.

139 citations

Proceedings ArticleDOI
07 Jan 1991
TL;DR: In this paper, an up-wind scheme for solving the Euler equations on unstructured tetrahedral meshes is presented, which yields highly resolved solutions in regions of smooth flow while avoiding oscillations across shocks without explicit limiting.
Abstract: An upwind scheme is presented for solving the three-dimensional Euler equations on unstructured tetrahedral meshes. Spatial discretization is accomplished by a cell-centered finite-volume formulation using flux-difference splitting. Higher-order differences are formed by a novel cell reconstruction process which results in computational times per cell comparable to those of structured codes. The approach yields highly resolved solutions in regions of smooth flow while avoiding oscillations across shocks without explicit limiting. Solutions are advanced in time by a 3-stage Runge-Kutta time-stepping scheme with convergence accelerated to steady state by local time stepping and implicit residual smoothing. Solutions are presented for a range of configurations in the transonic speed regime to demonstrate code accuracy, speed, and robustness. The results include an assessment of grid sensitivity and convergence acceleration by mesh sequencing.

139 citations


Authors

Showing all 16015 results

NameH-indexPapersCitations
Daniel J. Jacob16265676530
Donald R. Blake11872749697
Veerabhadran Ramanathan10030147561
Raja Parasuraman9140241455
Robert W. Platt8863831918
James M. Russell8769129383
Daniel J. Inman8391837920
Antony Jameson7947431518
Ya-Ping Sun7927728722
Patrick M. Crill7922820850
Richard B. Miles7875925239
Patrick Minnis7749023403
Robert W. Talbot7729719783
Raphael T. Haftka7677328111
Jack E. Dibb7534418399
Network Information
Related Institutions (5)
Ames Research Center
35.8K papers, 1.3M citations

89% related

German Aerospace Center
26.7K papers, 553.3K citations

89% related

Air Force Research Laboratory
24.6K papers, 493.8K citations

87% related

United States Naval Research Laboratory
45.4K papers, 1.5M citations

85% related

Jet Propulsion Laboratory
14.3K papers, 548.1K citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202335
202286
2021571
2020540
2019669
2018797