scispace - formally typeset
Search or ask a question
Institution

Langley Research Center

FacilityHampton, Virginia, United States
About: Langley Research Center is a facility organization based out in Hampton, Virginia, United States. It is known for research contribution in the topics: Mach number & Wind tunnel. The organization has 15945 authors who have published 37602 publications receiving 821623 citations. The organization is also known as: NASA Langley & NASA Langley Research Center.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an analysis of more than 22,000 ozone profiles from Stratospheric Aerosol and Gas Experiment I (SAGE I) and SAGE II between 50 deg N and 50 deg S is used in conjunction with 9 years (1979-1987) of daily global depictions of total ozone from the TOMS instrument aboard Nimbus 7 to investigate the spatial distribution and seasonal cycle of the integrated amount of ozone in the troposphere.
Abstract: An analysis of more than 22,000 ozone profiles from Stratospheric Aerosol and Gas Experiment I (SAGE I) (1979-1981) and SAGE II (1984-1987) between 50 deg N and 50 deg S is used in conjunction with 9 years (1979-1987) of daily global depictions of total ozone from the TOMS instrument aboard Nimbus 7 to investigate the spatial distribution and seasonal cycle of the integrated amount of ozone in the troposphere. In the tropics, highest concentrations are found in the eastern Atlantic Ocean downwind (west) of Africa and maximize during the time when biomass burning is most prevalent, between July and October. A different seasonal cycle in the tropics is also observed over Indonesia, where a relative maximum is present in the March-April time frame, likewise consistent with when biomass burning is most prevalent. At mid-latitudes, highest concentrations are found downwind of Asia and maximize in the summer. Relatively higher amounts of tropospheric ozone are similarly observed downwind of North America and Europe. At mid-latitudes, the ratio between the amount of tropospheric ozone in the Northern Hemisphere and the amount in the Southern Hemisphere is 1.4, in good agreement with in situ measurements.

482 citations

Journal ArticleDOI
TL;DR: An in-depth overview of the architecture and performance of the SIBYL algorithm is provided, which accomplishes its goals by integrating an adaptive context-sensitive profile scanner into an iterated multiresolution spatial averaging scheme.
Abstract: Accurate knowledge of the vertical and horizontal extent of clouds and aerosols in the earth s atmosphere is critical in assessing the planet s radiation budget and for advancing human understanding of climate change issues. To retrieve this fundamental information from the elastic backscatter lidar data acquired during the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, a selective, iterated boundary location (SIBYL) algorithm has been developed and deployed. SIBYL accomplishes its goals by integrating an adaptive context-sensitive profile scanner into an iterated multiresolution spatial averaging scheme. This paper provides an in-depth overview of the architecture and performance of the SIBYL algorithm. It begins with a brief review of the theory of target detection in noise-contaminated signals, and an enumeration of the practical constraints levied on the retrieval scheme by the design of the lidar hardware, the geometry of a space-based remote sensing platform, and the spatial variability of the measurement targets. Detailed descriptions are then provided for both the adaptive threshold algorithm used to detect features of interest within individual lidar profiles and the fully automated multiresolution averaging engine within which this profile scanner functions. The resulting fusion of profile scanner and averaging engine is specifically designed to optimize the trade-offs between the widely varying signal-to-noise ratio of the measurements and the disparate spatial resolutions of the detection targets. Throughout the paper, specific algorithm performance details are illustrated using examples drawn from the existing CALIPSO dataset. Overall performance is established by comparisons to existing layer height distributions obtained by other airborne and space-based lidars.

477 citations

Journal ArticleDOI
TL;DR: In this paper, the verification and extension of the most promising of these riblet variations were investigated and the results indicated that microsurface geometry variations which change the near-wall structure of the flow have been effective in reducing drag.
Abstract: T viscous drag of turbulent boundary layers is a significant factor contributing to the fuel costs of the airlines. Several studies have indicated that microsurface geometry variations which change the near-wall structure of the flow have been effective in reducing drag. Summarized here is an investigation into the verification and extension of the most promising of these riblet variations.

476 citations

Journal ArticleDOI
TL;DR: In this paper, a continuous adjoint approach for obtaining sensitivity derivatives on unstructured grids is developed and analyzed, and a second-order accurate discretization method is described.

466 citations


Authors

Showing all 16015 results

NameH-indexPapersCitations
Daniel J. Jacob16265676530
Donald R. Blake11872749697
Veerabhadran Ramanathan10030147561
Raja Parasuraman9140241455
Robert W. Platt8863831918
James M. Russell8769129383
Daniel J. Inman8391837920
Antony Jameson7947431518
Ya-Ping Sun7927728722
Patrick M. Crill7922820850
Richard B. Miles7875925239
Patrick Minnis7749023403
Robert W. Talbot7729719783
Raphael T. Haftka7677328111
Jack E. Dibb7534418399
Network Information
Related Institutions (5)
Ames Research Center
35.8K papers, 1.3M citations

89% related

German Aerospace Center
26.7K papers, 553.3K citations

89% related

Air Force Research Laboratory
24.6K papers, 493.8K citations

87% related

United States Naval Research Laboratory
45.4K papers, 1.5M citations

85% related

Jet Propulsion Laboratory
14.3K papers, 548.1K citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202335
202286
2021571
2020540
2019669
2018797