scispace - formally typeset
Search or ask a question
Institution

Langley Research Center

FacilityHampton, Virginia, United States
About: Langley Research Center is a facility organization based out in Hampton, Virginia, United States. It is known for research contribution in the topics: Mach number & Wind tunnel. The organization has 15945 authors who have published 37602 publications receiving 821623 citations. The organization is also known as: NASA Langley & NASA Langley Research Center.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a method for determining the nonlinear modal stiffness coefficients for an arbitrary finite element model is presented, which is suitable for use with commercial finite element codes having a geometrically nonlinear static capability.

279 citations

Journal ArticleDOI
TL;DR: In this article, the variability of stratospheric aerosol loading between 1985 and 2010 is explored with measurements from SAGE II, CALIPSO, GOMOS/ENVISAT, and OSIRIS/Odin space-based instruments.
Abstract: The variability of stratospheric aerosol loading between 1985 and 2010 is explored with measurements from SAGE II, CALIPSO, GOMOS/ENVISAT, and OSIRIS/Odin space-based instruments. We find that, following the 1991 eruption of Mount Pinatubo, stratospheric aerosol levels increased by as much as two orders of magnitude and only reached "background levels" between 1998 and 2002. From 2002 onwards, a systematic increase has been reported by a number of investigators. Recently, the trend, based on ground-based lidar measurements, has been tentatively attributed to an increase of SO2 entering the stratosphere associated with coal burning in Southeast Asia. However, we demonstrate with these satellite measurements that the observed trend is mainly driven by a series of moderate but increasingly intense volcanic eruptions primarily at tropical latitudes. These events injected sulfur directly to altitudes between 18 and 20 km. The resulting aerosol particles are slowly lofted into the middle stratosphere by the Brewer-Dobson circulation and are eventually transported to higher latitudes.

278 citations

01 Feb 1990
TL;DR: An upwind-biased, point-implicit relaxation algorithm for obtaining the numerical solution to the governing equations for three-dimensional, viscous, compressible, perfect-gas flows is described in this paper.
Abstract: An upwind-biased, point-implicit relaxation algorithm for obtaining the numerical solution to the governing equations for three-dimensional, viscous, compressible, perfect-gas flows is described. The algorithm is derived using a finite-volume formulation in which the inviscid components of flux across cell walls are described with Roe's averaging and Harten's entropy fix with second-order corrections based on Yee's Symmetric Total Variation Diminishing scheme. Viscous terms are discretized using central differences. The relaxation strategy is well suited for computers employing either vector or parallel architectures. It is also well suited to the numerical solution of the governing equations on unstructured grids. Because of the point-implicit relaxation strategy, the algorithm remains stable at large Courant numbers without the necessity of solving large, block tri-diagonal systems. Convergence rates and grid refinement studies are conducted for Mach 5 flow through an inlet with a 10 deg compression ramp and Mach 14 flow over a 15 deg ramp. Predictions for pressure distributions, surface heating, and aerodynamics coefficients compare well with experiment data for Mach 10 flow over a blunt body.

278 citations

Journal ArticleDOI
29 Oct 1992-Nature
TL;DR: In this article, the authors describe the temporal and spatial distribution of African savanna fires over the entire African continent, as determined from night-time satellite imagery, and find that most fires are left to burn uncontrolled, so that there is no strong diurnal cycle in the fire frequency.
Abstract: Savannas consist of a continuous layer of grass interspersed with scattered trees or shrubs, and cover approx. 10 million square kilometers of tropical Africa. African savanna fires, almost all resulting from human activities, may produce as much as a third of the total global emissions from biomass burning. Little is known, however, about the frequency and location of these fires, and the area burned each year. Emissions from African savanna burning are known to be transported over the mid-Atlantic, south Pacific and Indian oceans; but to study fully the transport of regional savanna burning and the seasonality of the atmospheric circulation must be considered simultaneously. Here we describe the temporal and spatial distribution of savanna fires over the entire African continent, as determined from night-time satellite imagery. We find that, contrary to expectations, most fires are left to burn uncontrolled, so that there is no strong diurnal cycle in the fire frequency. The knowledge gained from this study regarding the distribution and variability of fires will aid monitoring of the climatically important trace gases emitted from burning biomass.

278 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provided a multi-year satellite-based estimate of dust deposition into the Amazon Basin using three-dimensional (3-D) aerosol measurements over 2007-2013 from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP).
Abstract: The productivity of the Amazon rainforest is constrained by the availability of nutrients, in particular phosphorus (P). Deposition of long-range transported African dust is recognized as a potentially important but poorly quantified source of phosphorus. This study provides a first multiyear satellite-based estimate of dust deposition into the Amazon Basin using three-dimensional (3-D) aerosol measurements over 2007–2013 from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). The 7 year average of dust deposition into the Amazon Basin is estimated to be 28 (8–48) Tg a−1 or 29 (8–50) kg ha−1 a−1. The dust deposition shows significant interannual variation that is negatively correlated with the prior-year rainfall in the Sahel. The CALIOP-based multiyear mean estimate of dust deposition matches better with estimates from in situ measurements and model simulations than a previous satellite-based estimate does. The closer agreement benefits from a more realistic geographic definition of the Amazon Basin and inclusion of meridional dust transport calculation in addition to the 3-D nature of CALIOP aerosol measurements. The imported dust could provide about 0.022 (0.006–0.037) Tg P of phosphorus per year, equivalent to 23 (7–39) g P ha−1 a−1 to fertilize the Amazon rainforest. This out-of-basin phosphorus input is comparable to the hydrological loss of phosphorus from the basin, suggesting an important role of African dust in preventing phosphorus depletion on timescales of decades to centuries.

277 citations


Authors

Showing all 16015 results

NameH-indexPapersCitations
Daniel J. Jacob16265676530
Donald R. Blake11872749697
Veerabhadran Ramanathan10030147561
Raja Parasuraman9140241455
Robert W. Platt8863831918
James M. Russell8769129383
Daniel J. Inman8391837920
Antony Jameson7947431518
Ya-Ping Sun7927728722
Patrick M. Crill7922820850
Richard B. Miles7875925239
Patrick Minnis7749023403
Robert W. Talbot7729719783
Raphael T. Haftka7677328111
Jack E. Dibb7534418399
Network Information
Related Institutions (5)
Ames Research Center
35.8K papers, 1.3M citations

89% related

German Aerospace Center
26.7K papers, 553.3K citations

89% related

Air Force Research Laboratory
24.6K papers, 493.8K citations

87% related

United States Naval Research Laboratory
45.4K papers, 1.5M citations

85% related

Jet Propulsion Laboratory
14.3K papers, 548.1K citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202335
202286
2021571
2020540
2019669
2018797