scispace - formally typeset
Search or ask a question
Institution

Langley Research Center

FacilityHampton, Virginia, United States
About: Langley Research Center is a facility organization based out in Hampton, Virginia, United States. It is known for research contribution in the topics: Mach number & Wind tunnel. The organization has 15945 authors who have published 37602 publications receiving 821623 citations. The organization is also known as: NASA Langley & NASA Langley Research Center.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a photochemical time-dependent box model constrained by coincident measurements of long-lived tracers and physical parameters was used to assess fast photochemical theory over the east Asian coast and western Pacific.
Abstract: [1] Measurements of several short-lived photochemical species (e.g., OH, HO2, and CH2O) were obtained from the DC-8 and P3-B aircraft during the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) campaign. To assess fast photochemical theory over the east Asian coast and western Pacific, these measurements are compared to predictions using a photochemical time-dependent box model constrained by coincident measurements of long-lived tracers and physical parameters. Both OH and HO2 are generally overpredicted by the model throughout the troposphere, which is a different result from previous field campaigns. The calculated-to-observed ratio of OH shows an altitude trend, with OH overpredicted by 80% in the upper troposphere and by 40–60% in the middle troposphere. Boundary layer and lower tropospheric OH ratios decrease from middle tropospheric values to 1.07 for the DC-8 and to 0.70 for the P3-B. HO2 measured on the DC-8 is overpredicted by a median of 23% and shows no trend in the agreement with altitude. Three subsets of data which compose 12% of the HO2 measurements represent outliers with respect to calculated-to-observed ratios: stratospherically influenced air, upper tropospheric data with NO > 135 pptv, and data from within clouds. Pronounced underpredictions of both HO2 and OH were found for stratospherically influenced air, which is in contrast to previous studies showing good agreement of predicted and observed HOx in the stratosphere. Observational evidence of heterogeneous uptake of HO2 within low and middle tropospheric clouds is presented, though there is no indication of significant HO2 uptake within higher-altitude clouds. Model predictions of CH2O are in good agreement with observations in the median for background concentrations, but a large scatter exists. Factors contributing to this scatter are examined, including the limited availability of some important constraining measurements, particularly CH3OOH. Some high concentrations of CH2O near the coast are underpredicted by the box model as a result of the inherent neglect of transport effects of CH2O and its precursors via the steady state assumption; however, these occurrences are limited to ∼1% of the data. For the vast majority of the atmosphere, transport is unimportant in the budget of CH2O, which may be considered to be in steady state.

232 citations

Journal ArticleDOI
TL;DR: In this article, a review of the literature on composite models, predictor-corrector procedures, the effect of temperature-dependence of material properties on the response, and the sensitivity of the thermomechanical response to variations in material parameters is presented.
Abstract: The focus of this review is on the hierarchy of composite models, predictor-corrector procedures, the effect of temperature-dependence of material properties on the response, and the sensitivity of the thermomechanical response to variations in material parameters. The literature reviewed is devoted to the following eight application areas: heat transfer; thermal stresses; curing, processing and residual stresses; bifurcation buckling; vibrations of heated plates and shells; large deflection and postbuckling problems; and sandwich plates and shells. Extensive numerical results are presented showing the effects of variation in the lamination and geometric parameters of temperature-sensitive angle-ply composite plates on the accuracy of thermal buckling response, and the sensitivity derivatives predicted by nine different modeling approaches (based on two-dimensional theories). The standard of comparison is taken to be the exact three-dimensional thermoelasticity solutions. Some future directions for research on the modeling of high-temperature multilayered composites are outlined. 448 ref., 16 figs., 11 tabs.

232 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide details on the current approach to multi-scale modeling and simulation of advanced materials for structural applications, including high-performance polymers, composites, and nanotube-reinforced polymers.

231 citations

Journal ArticleDOI
TL;DR: Nanoindentation testing was used to determine the dynamic viscoelastic properties of eight polymer materials, which include three high-performance polymers and five densities of high-density polyethylene as mentioned in this paper.
Abstract: Nanoindentation testing was used to determine the dynamic viscoelastic properties of eight polymer materials, which include three high-performance polymers and five densities of high-density polyethylene. It was determined that varying the harmonic frequency of nanoindentation does not have a significant effect on the measured storage and loss moduli of the polymers. Agreement was found between these nanoindentation results and data from bulk dynamic mechanical testing of the same materials. Varying the harmonic amplitude of the nanoindentation had a limited effect on the measured viscoelastic properties of the resins. However, storage and loss moduli from nanoindentation were shown to be sensitive to changes in the density of the polyethylene.

230 citations

Journal ArticleDOI
TL;DR: A review of Tm and Ho materials is presented in this paper, covering some fundamental aspects on the spectroscopy and laser dynamics in both single and co-doped systems.
Abstract: A review of Tm and Ho materials is presented, covering some fundamental aspects on the spectroscopy and laser dynamics in both single and co-doped systems. Following an introduction to 2-μm lasers, applications and historical development, the physics of quasi-four level lasers, energy transfer and modeling are discussed in some detail. Recent developments in using Tm lasers to pump Ho lasers are discussed, and seen to offer some advantages over conventional Tm:Ho lasers. This article is not intended as a complete review, but as a primer for introducing concepts and a resource for further study.

230 citations


Authors

Showing all 16015 results

NameH-indexPapersCitations
Daniel J. Jacob16265676530
Donald R. Blake11872749697
Veerabhadran Ramanathan10030147561
Raja Parasuraman9140241455
Robert W. Platt8863831918
James M. Russell8769129383
Daniel J. Inman8391837920
Antony Jameson7947431518
Ya-Ping Sun7927728722
Patrick M. Crill7922820850
Richard B. Miles7875925239
Patrick Minnis7749023403
Robert W. Talbot7729719783
Raphael T. Haftka7677328111
Jack E. Dibb7534418399
Network Information
Related Institutions (5)
Ames Research Center
35.8K papers, 1.3M citations

89% related

German Aerospace Center
26.7K papers, 553.3K citations

89% related

Air Force Research Laboratory
24.6K papers, 493.8K citations

87% related

United States Naval Research Laboratory
45.4K papers, 1.5M citations

85% related

Jet Propulsion Laboratory
14.3K papers, 548.1K citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202335
202286
2021571
2020540
2019669
2018797