scispace - formally typeset
Search or ask a question
Institution

Langley Research Center

FacilityHampton, Virginia, United States
About: Langley Research Center is a facility organization based out in Hampton, Virginia, United States. It is known for research contribution in the topics: Mach number & Wind tunnel. The organization has 15945 authors who have published 37602 publications receiving 821623 citations. The organization is also known as: NASA Langley & NASA Langley Research Center.


Papers
More filters
Journal ArticleDOI
TL;DR: The spline under tension was introduced by Schweikert in an attempt to imitate cubic splines but avoid the spurious critical points they induce.
Abstract: The spline under tension was introduced by Schweikert in an attempt to imitate cubic splines but avoid the spurious critical points they induce. The defining equations are presented here, together with an efficient method for determining the necessary parameters and computing the resultant spline. The standard scalar-valued curve fitting problem is discussed, as well as the fitting of open and closed curves in the plane. The use of these curves and the importance of the tension in the fitting of contour lines are mentioned as application.

228 citations

Journal ArticleDOI
TL;DR: In this paper, measurements of BrO suggest that inorganic bromine (Bry) at and above the tropopause is 4 to 8 ppt greater than assumed in models used in past ozone trend assessment studies.
Abstract: [1] Measurements of BrO suggest that inorganic bromine (Bry) at and above the tropopause is 4 to 8 ppt greater than assumed in models used in past ozone trend assessment studies. This additional bromine is likely carried to the stratosphere by short-lived biogenic compounds and their decomposition products, including tropospheric BrO. Including this additional bromine in an ozone trend simulation increases the computed ozone depletion over the past ∼25 years, leading to better agreement between measured and modeled ozone trends. This additional Bry (assumed constant over time) causes more ozone depletion because associated BrO provides a reaction partner for ClO, which increases due to anthropogenic sources. Enhanced Bry causes photochemical loss of ozone below ∼14 km to change from being controlled by HOx catalytic cycles (primarily HO2+O3) to a situation where loss by the BrO+HO2 cycle is also important.

228 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used microwave limb sounder and sounder data to characterize the four-dimensional stratopause evolution throughout the life-cycle of a major stratospheric sudden warming (SSW).
Abstract: Microwave Limb Sounder and Sounding of the Atmosphere with Broadband Emission Radiometry data provide the first opportunity to characterize the four-dimensional stratopause evolution throughout the life-cycle of a major stratospheric sudden warming (SSW). The polar stratopause, usually higher than that at midlatitudes, dropped by ∼30 km and warmed during development of a major “wave 1” SSW in January 2006, with accompanying mesospheric cooling. When the polar vortex broke down, the stratopause cooled and became ill-defined, with a nearly isothermal stratosphere. After the polar vortex started to recover in the upper stratosphere/lower mesosphere (USLM), a cool stratopause reformed above 75 km, then dropped and warmed; both the mesosphere above and the stratosphere below cooled at this time. The polar stratopause remained separated from that at midlatitudes across the core of the polar night jet. In the early stages of the SSW, the strongly tilted (westward with increasing altitude) polar vortex extended into the mesosphere, and enclosed a secondary temperature maximum extending westward and slightly equatorward from the highest altitude part of the polar stratopause over the cool stratopause near the vortex edge. The temperature evolution in the USLM resulted in strongly enhanced radiative cooling in the mesosphere during the recovery from the SSW, but significantly reduced radiative cooling in the upper stratosphere. Assimilated meteorological analyses from the European Centre for Medium-Range weather Forecasts (ECMWF) and Goddard Earth Observing System Version 5.0.1 (GEOS-5), which are not constrained by data at polar stratopause altitudes and have model tops near 80 km, could not capture the secondary temperature maximum or the high stratopause after the SSW; they also misrepresent polar temperature structure during and after the stratopause breakdown, leading to large biases in their radiative heating rates. ECMWF analyses represent the stratospheric temperature structure more accurately, suggesting a better representation of vertical motion; GEOS-5 analyses more faithfully describe stratopause level wind and wave amplitudes. The high-quality satellite temperature data used here provide the first daily, global, multiannual data sets suitable for assessing and, eventually, improving representation of the USLM in models and assimilation systems.

227 citations

Journal ArticleDOI
TL;DR: TEMPO was selected in 2012 by NASA as the first Earth Venture Instrument, for launch between 2018 and 2021, and it will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy as mentioned in this paper.
Abstract: TEMPO was selected in 2012 by NASA as the first Earth Venture Instrument, for launch between 2018 and 2021. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO observes from Mexico City, Cuba, and the Bahamas to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (~2.1 km N/S×4.4 km E/W at 36.5°N, 100°W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry, as well as contributing to carbon cycle knowledge. Measurements are made hourly from geostationary (GEO) orbit, to capture the high variability present in the diurnal cycle of emissions and chemistry that are unobservable from current low-Earth orbit (LEO) satellites that measure once per day. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a commercial GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), formaldehyde (H2CO), glyoxal (C2H2O2), bromine monoxide (BrO), IO (iodine monoxide),water vapor, aerosols, cloud parameters, ultraviolet radiation, and foliage properties. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides these near-real-time air quality products that will be made publicly available. TEMPO will launch at a prime time to be the North American component of the global geostationary constellation of pollution monitoring together with the European Sentinel-4 (S4) and Korean Geostationary Environment Monitoring Spectrometer (GEMS) instruments.

226 citations

Journal ArticleDOI
01 Feb 1986-Tellus B
TL;DR: In the tundra, average CH 4 emission rates varied from 4.9 mg CH 4 m -2 d −1 (moist tundras) to 119 mg CH4 m −2 d -1 (waterlogged tundrains) as mentioned in this paper.
Abstract: Methane (CH 4 ) flux measurements from Alaskan tundra bogs, an alpine fen, and a subarctic boreal marsh were obtained at field sites ranging from Prudhoe Bay on the coast of the Arctic Ocean to the Alaskan Range south of Fairbanks during August 1984. In the tundra, average CH 4 emission rates varied from 4.9 mg CH 4 m -2 d -1 (moist tundra) to 119 mg CH 4 m -2 d -1 (waterlogged tundra). Fluxes averaged 40 mg CH 4 m -2 d -1 from wet tussock meadows in the Brooks Range and 289 mg CH 4 m -2 d -1 from an alpine fen in the Alaskan Range. The boreal marsh had an average CH 4 emission rate of 106 mg CH 4 m -2 d -1 . Significant emissions were detected in tundra areas where peat temperatures were as low as 4°C and permafrost was only 25 cm below the ground surface. Emission rates from the 17 sites sampled were found to be logarithmically related to water levels at the sites. Extrapolation of our data to an estimate of the total annual CH 4 emission from all arctic and boreal wetlands suggests that these ecosystems are a major source of atmospheric CH 4 and could account for up to 23% of global CH 4 emissions from wetlands. DOI: 10.1111/j.1600-0889.1986.tb00083.x

226 citations


Authors

Showing all 16015 results

NameH-indexPapersCitations
Daniel J. Jacob16265676530
Donald R. Blake11872749697
Veerabhadran Ramanathan10030147561
Raja Parasuraman9140241455
Robert W. Platt8863831918
James M. Russell8769129383
Daniel J. Inman8391837920
Antony Jameson7947431518
Ya-Ping Sun7927728722
Patrick M. Crill7922820850
Richard B. Miles7875925239
Patrick Minnis7749023403
Robert W. Talbot7729719783
Raphael T. Haftka7677328111
Jack E. Dibb7534418399
Network Information
Related Institutions (5)
Ames Research Center
35.8K papers, 1.3M citations

89% related

German Aerospace Center
26.7K papers, 553.3K citations

89% related

Air Force Research Laboratory
24.6K papers, 493.8K citations

87% related

United States Naval Research Laboratory
45.4K papers, 1.5M citations

85% related

Jet Propulsion Laboratory
14.3K papers, 548.1K citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202335
202286
2021571
2020540
2019669
2018797