scispace - formally typeset
Search or ask a question

Showing papers by "Lawrence Berkeley National Laboratory published in 2019"


Journal ArticleDOI
01 Oct 2019
TL;DR: Recent developments in the Phenix software package are described in the context of macromolecular structure determination using X-rays, neutrons and electrons.
Abstract: Diffraction (X-ray, neutron and electron) and electron cryo-microscopy are powerful methods to determine three-dimensional macromolecular structures, which are required to understand biological processes and to develop new therapeutics against diseases. The overall structure-solution workflow is similar for these techniques, but nuances exist because the properties of the reduced experimental data are different. Software tools for structure determination should therefore be tailored for each method. Phenix is a comprehensive software package for macromolecular structure determination that handles data from any of these techniques. Tasks performed with Phenix include data-quality assessment, map improvement, model building, the validation/rebuilding/refinement cycle and deposition. Each tool caters to the type of experimental data. The design of Phenix emphasizes the automation of procedures, where possible, to minimize repetitive and time-consuming manual tasks, while default parameters are chosen to encourage best practice. A graphical user interface provides access to many command-line features of Phenix and streamlines the transition between programs, project tracking and re-running of previous tasks.

3,268 citations


Journal ArticleDOI
Seth Carbon1, Eric Douglass1, Nathan Dunn1, Benjamin M. Good1  +189 moreInstitutions (19)
TL;DR: GO-CAM, a new framework for representing gene function that is more expressive than standard GO annotations, has been released, and users can now explore the growing repository of these models.
Abstract: The Gene Ontology resource (GO; http://geneontology.org) provides structured, computable knowledge regarding the functions of genes and gene products. Founded in 1998, GO has become widely adopted in the life sciences, and its contents are under continual improvement, both in quantity and in quality. Here, we report the major developments of the GO resource during the past two years. Each monthly release of the GO resource is now packaged and given a unique identifier (DOI), enabling GO-based analyses on a specific release to be reproduced in the future. The molecular function ontology has been refactored to better represent the overall activities of gene products, with a focus on transcription regulator activities. Quality assurance efforts have been ramped up to address potentially out-of-date or inaccurate annotations. New evidence codes for high-throughput experiments now enable users to filter out annotations obtained from these sources. GO-CAM, a new framework for representing gene function that is more expressive than standard GO annotations, has been released, and users can now explore the growing repository of these models. We also provide the ‘GO ribbon’ widget for visualizing GO annotations to a gene; the widget can be easily embedded in any web page.

2,138 citations


Journal ArticleDOI
13 Feb 2019-Nature
TL;DR: It is argued that contextual cues should be used as part of deep learning to gain further process understanding of Earth system science problems, improving the predictive ability of seasonal forecasting and modelling of long-range spatial connections across multiple timescales.
Abstract: Machine learning approaches are increasingly used to extract patterns and insights from the ever-increasing stream of geospatial data, but current approaches may not be optimal when system behaviour is dominated by spatial or temporal context. Here, rather than amending classical machine learning, we argue that these contextual cues should be used as part of deep learning (an approach that is able to extract spatio-temporal features automatically) to gain further process understanding of Earth system science problems, improving the predictive ability of seasonal forecasting and modelling of long-range spatial connections across multiple timescales, for example. The next step will be a hybrid modelling approach, coupling physical process models with the versatility of data-driven machine learning.

2,014 citations


Journal ArticleDOI
TL;DR: This Review discusses model high-entropy alloys with interesting properties, the physical mechanisms responsible for their behaviour and fruitful ways to probe and discover new materials in the vast compositional space that remains to be explored.
Abstract: Alloying has long been used to confer desirable properties to materials. Typically, it involves the addition of relatively small amounts of secondary elements to a primary element. For the past decade and a half, however, a new alloying strategy that involves the combination of multiple principal elements in high concentrations to create new materials called high-entropy alloys has been in vogue. The multi-dimensional compositional space that can be tackled with this approach is practically limitless, and only tiny regions have been investigated so far. Nevertheless, a few high-entropy alloys have already been shown to possess exceptional properties, exceeding those of conventional alloys, and other outstanding high-entropy alloys are likely to be discovered in the future. Here, we review recent progress in understanding the salient features of high-entropy alloys. Model alloys whose behaviour has been carefully investigated are highlighted and their fundamental properties and underlying elementary mechanisms discussed. We also address the vast compositional space that remains to be explored and outline fruitful ways to identify regions within this space where high-entropy alloys with potentially interesting properties may be lurking. High-entropy alloys have greatly expanded the compositional space for alloy design. In this Review, the authors discuss model high-entropy alloys with interesting properties, the physical mechanisms responsible for their behaviour and fruitful ways to probe and discover new materials in the vast compositional space that remains to be explored.

1,798 citations


Journal ArticleDOI
TL;DR: The multi-level mechanisms underlying SCI and several risk factors that promote this health-damaging phenotype, including infections, physical inactivity, poor diet, environmental and industrial toxicants and psychological stress are described.
Abstract: Although intermittent increases in inflammation are critical for survival during physical injury and infection, recent research has revealed that certain social, environmental and lifestyle factors can promote systemic chronic inflammation (SCI) that can, in turn, lead to several diseases that collectively represent the leading causes of disability and mortality worldwide, such as cardiovascular disease, cancer, diabetes mellitus, chronic kidney disease, non-alcoholic fatty liver disease and autoimmune and neurodegenerative disorders. In the present Perspective we describe the multi-level mechanisms underlying SCI and several risk factors that promote this health-damaging phenotype, including infections, physical inactivity, poor diet, environmental and industrial toxicants and psychological stress. Furthermore, we suggest potential strategies for advancing the early diagnosis, prevention and treatment of SCI.

1,708 citations


Journal ArticleDOI
TL;DR: This review provides a comprehensive account of significant progress in the design and synthesis of MOF-based materials, including MOFs, MOF composites and MOF derivatives, and their application to carbon capture and conversion.
Abstract: Rapidly increasing atmospheric CO2 concentrations threaten human society, the natural environment, and the synergy between the two. In order to ameliorate the CO2 problem, carbon capture and conversion techniques have been proposed. Metal–organic framework (MOF)-based materials, a relatively new class of porous materials with unique structural features, high surface areas, chemical tunability and stability, have been extensively studied with respect to their applicability to such techniques. Recently, it has become apparent that the CO2 capture capabilities of MOF-based materials significantly boost their potential toward CO2 conversion. Furthermore, MOF-based materials’ well-defined structures greatly facilitate the understanding of structure–property relationships and their roles in CO2 capture and conversion. In this review, we provide a comprehensive account of significant progress in the design and synthesis of MOF-based materials, including MOFs, MOF composites and MOF derivatives, and their application to carbon capture and conversion. Special emphases on the relationships between CO2 capture capacities of MOF-based materials and their catalytic CO2 conversion performances are discussed.

1,378 citations


Journal ArticleDOI
26 Jul 2019-PeerJ
TL;DR: Comparing MetaBAT 2 to alternative software tools on over 100 real world metagenome assemblies shows superior accuracy and computing speed, and recommends the community adopts Meta BAT 2 for their meetagenome binning experiments.
Abstract: We previously reported on MetaBAT, an automated metagenome binning software tool to reconstruct single genomes from microbial communities for subsequent analyses of uncultivated microbial species. MetaBAT has become one of the most popular binning tools largely due to its computational efficiency and ease of use, especially in binning experiments with a large number of samples and a large assembly. MetaBAT requires users to choose parameters to fine-tune its sensitivity and specificity. If those parameters are not chosen properly, binning accuracy can suffer, especially on assemblies of poor quality. Here, we developed MetaBAT 2 to overcome this problem. MetaBAT 2 uses a new adaptive binning algorithm to eliminate manual parameter tuning. We also performed extensive software engineering optimization to increase both computational and memory efficiency. Comparing MetaBAT 2 to alternative software tools on over 100 real world metagenome assemblies shows superior accuracy and computing speed. Binning a typical metagenome assembly takes only a few minutes on a single commodity workstation. We therefore recommend the community adopts MetaBAT 2 for their metagenome binning experiments. MetaBAT 2 is open source software and available at https://bitbucket.org/berkeleylab/metabat.

1,334 citations


Journal ArticleDOI
TL;DR: In this article, a machine learning method was used to predict battery lifetime before the onset of capacity degradation with high accuracy. But, the prediction often cannot be made unless a battery has already degraded significantly.
Abstract: Accurately predicting the lifetime of complex, nonlinear systems such as lithium-ion batteries is critical for accelerating technology development. However, diverse aging mechanisms, significant device variability and dynamic operating conditions have remained major challenges. We generate a comprehensive dataset consisting of 124 commercial lithium iron phosphate/graphite cells cycled under fast-charging conditions, with widely varying cycle lives ranging from 150 to 2,300 cycles. Using discharge voltage curves from early cycles yet to exhibit capacity degradation, we apply machine-learning tools to both predict and classify cells by cycle life. Our best models achieve 9.1% test error for quantitatively predicting cycle life using the first 100 cycles (exhibiting a median increase of 0.2% from initial capacity) and 4.9% test error using the first 5 cycles for classifying cycle life into two groups. This work highlights the promise of combining deliberate data generation with data-driven modelling to predict the behaviour of complex dynamical systems. Accurately predicting battery lifetime is difficult, and a prediction often cannot be made unless a battery has already degraded significantly. Here the authors report a machine-learning method to predict battery life before the onset of capacity degradation with high accuracy.

1,029 citations


Journal ArticleDOI
Peter A. R. Ade1, James E. Aguirre2, Z. Ahmed3, Simone Aiola4  +276 moreInstitutions (53)
TL;DR: The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s as mentioned in this paper.
Abstract: The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial configuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping ≈ 10% of the sky to a white noise level of 2 μK-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of σ(r)=0.003. The large aperture telescope will map ≈ 40% of the sky at arcminute angular resolution to an expected white noise level of 6 μK-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensor-to-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources.

1,027 citations


Journal ArticleDOI
Eric C. Bellm1, Shrinivas R. Kulkarni2, Matthew J. Graham2, Richard Dekany2, Roger M. H. Smith2, Reed Riddle2, Frank J. Masci2, George Helou2, Thomas A. Prince2, Scott M. Adams2, Cristina Barbarino3, Tom A. Barlow2, James Bauer4, Ron Beck2, Justin Belicki2, Rahul Biswas3, Nadejda Blagorodnova2, Dennis Bodewits4, Bryce Bolin1, V. Brinnel5, Tim Brooke2, Brian D. Bue2, Mattia Bulla3, Rick Burruss2, S. Bradley Cenko6, S. Bradley Cenko4, Chan-Kao Chang7, Andrew J. Connolly1, Michael W. Coughlin2, John Cromer2, Virginia Cunningham4, Kaushik De2, Alex Delacroix2, Vandana Desai2, Dmitry A. Duev2, Gwendolyn Eadie1, Tony L. Farnham4, Michael Feeney2, Ulrich Feindt3, David Flynn2, Anna Franckowiak, Sara Frederick4, Christoffer Fremling2, Avishay Gal-Yam8, Suvi Gezari4, Matteo Giomi5, Daniel A. Goldstein2, V. Zach Golkhou1, Ariel Goobar3, Steven Groom2, Eugean Hacopians2, David Hale2, John Henning2, Anna Y. Q. Ho2, David Hover2, Justin Howell2, Tiara Hung4, Daniela Huppenkothen1, David Imel2, Wing-Huen Ip7, Wing-Huen Ip9, Željko Ivezić1, Edward Jackson2, Lynne Jones1, Mario Juric1, Mansi M. Kasliwal2, Shai Kaspi10, Stephen Kaye2, Michael S. P. Kelley4, Marek Kowalski5, Emily Kramer2, Thomas Kupfer2, Thomas Kupfer11, Walter Landry2, Russ R. Laher2, Chien De Lee7, Hsing Wen Lin12, Hsing Wen Lin7, Zhong-Yi Lin7, Ragnhild Lunnan3, Ashish Mahabal2, Peter H. Mao2, Adam A. Miller13, Adam A. Miller14, Serge Monkewitz2, Patrick J. Murphy2, Chow-Choong Ngeow7, Jakob Nordin5, Peter Nugent15, Peter Nugent16, Eran O. Ofek8, Maria T. Patterson1, Bryan E. Penprase17, Michael Porter2, L. Rauch, Umaa Rebbapragada2, Daniel J. Reiley2, Mickael Rigault18, Hector P. Rodriguez2, Jan van Roestel19, Ben Rusholme2, J. V. Santen, Steve Schulze8, David L. Shupe2, Leo Singer4, Leo Singer6, Maayane T. Soumagnac8, Robert Stein, Jason Surace2, Jesper Sollerman3, Paula Szkody1, Francesco Taddia3, Scott Terek2, Angela Van Sistine20, Sjoert van Velzen4, W. Thomas Vestrand21, Richard Walters2, Charlotte Ward4, Quanzhi Ye2, Po-Chieh Yu7, Lin Yan2, Jeffry Zolkower2 
TL;DR: The Zwicky Transient Facility (ZTF) as mentioned in this paper is a new optical time-domain survey that uses the Palomar 48 inch Schmidt telescope, which provides a 47 deg^2 field of view and 8 s readout time, yielding more than an order of magnitude improvement in survey speed relative to its predecessor survey.
Abstract: The Zwicky Transient Facility (ZTF) is a new optical time-domain survey that uses the Palomar 48 inch Schmidt telescope. A custom-built wide-field camera provides a 47 deg^2 field of view and 8 s readout time, yielding more than an order of magnitude improvement in survey speed relative to its predecessor survey, the Palomar Transient Factory. We describe the design and implementation of the camera and observing system. The ZTF data system at the Infrared Processing and Analysis Center provides near-real-time reduction to identify moving and varying objects. We outline the analysis pipelines, data products, and associated archive. Finally, we present on-sky performance analysis and first scientific results from commissioning and the early survey. ZTF's public alert stream will serve as a useful precursor for that of the Large Synoptic Survey Telescope.

1,009 citations


Journal ArticleDOI
Željko Ivezić1, Steven M. Kahn2, J. Anthony Tyson3, Bob Abel4  +332 moreInstitutions (55)
TL;DR: The Large Synoptic Survey Telescope (LSST) as discussed by the authors is a large, wide-field ground-based system designed to obtain repeated images covering the sky visible from Cerro Pachon in northern Chile.
Abstract: We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the solar system, exploring the transient optical sky, and mapping the Milky Way. LSST will be a large, wide-field ground-based system designed to obtain repeated images covering the sky visible from Cerro Pachon in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2 field of view, a 3.2-gigapixel camera, and six filters (ugrizy) covering the wavelength range 320–1050 nm. The project is in the construction phase and will begin regular survey operations by 2022. About 90% of the observing time will be devoted to a deep-wide-fast survey mode that will uniformly observe a 18,000 deg2 region about 800 times (summed over all six bands) during the anticipated 10 yr of operations and will yield a co-added map to r ~ 27.5. These data will result in databases including about 32 trillion observations of 20 billion galaxies and a similar number of stars, and they will serve the majority of the primary science programs. The remaining 10% of the observing time will be allocated to special projects such as Very Deep and Very Fast time domain surveys, whose details are currently under discussion. We illustrate how the LSST science drivers led to these choices of system parameters, and we describe the expected data products and their characteristics.

Journal ArticleDOI
25 Feb 2019-Nature
TL;DR: In this paper, the authors reported the observation of multiple emergent peaks around the original WSe2 A exciton resonance in the absorption spectra, and they exhibit gate dependences that are distinct from that of the A excitons in WSe 2/WS 2 heterostructures with large twist angles.
Abstract: Moire superlattices enable the generation of new quantum phenomena in two-dimensional heterostructures, in which the interactions between the atomically thin layers qualitatively change the electronic band structure of the superlattice. For example, mini-Dirac points, tunable Mott insulator states and the Hofstadter butterfly pattern can emerge in different types of graphene/boron nitride moire superlattices, whereas correlated insulating states and superconductivity have been reported in twisted bilayer graphene moire superlattices1-12. In addition to their pronounced effects on single-particle states, moire superlattices have recently been predicted to host excited states such as moire exciton bands13-15. Here we report the observation of moire superlattice exciton states in tungsten diselenide/tungsten disulfide (WSe2/WS2) heterostructures in which the layers are closely aligned. These moire exciton states manifest as multiple emergent peaks around the original WSe2 A exciton resonance in the absorption spectra, and they exhibit gate dependences that are distinct from that of the A exciton in WSe2 monolayers and in WSe2/WS2 heterostructures with large twist angles. These phenomena can be described by a theoretical model in which the periodic moire potential is much stronger than the exciton kinetic energy and generates multiple flat exciton minibands. The moire exciton bands provide an attractive platform from which to explore and control excited states of matter, such as topological excitons and a correlated exciton Hubbard model, in transition-metal dichalcogenides.

Journal ArticleDOI
01 Oct 2019-Nature
TL;DR: Atomic-resolution chemical mapping reveals deformation mechanisms in the CrFeCoNiPd alloy that are promoted by pronounced fluctuations in composition and an increase in stacking-fault energy, leading to higher yield strength without compromising strain hardening and tensile ductility.
Abstract: High-entropy alloys are a class of materials that contain five or more elements in near-equiatomic proportions1,2. Their unconventional compositions and chemical structures hold promise for achieving unprecedented combinations of mechanical properties3–8. Rational design of such alloys hinges on an understanding of the composition–structure–property relationships in a near-infinite compositional space9,10. Here we use atomic-resolution chemical mapping to reveal the element distribution of the widely studied face-centred cubic CrMnFeCoNi Cantor alloy2 and of a new face-centred cubic alloy, CrFeCoNiPd. In the Cantor alloy, the distribution of the five constituent elements is relatively random and uniform. By contrast, in the CrFeCoNiPd alloy, in which the palladium atoms have a markedly different atomic size and electronegativity from the other elements, the homogeneity decreases considerably; all five elements tend to show greater aggregation, with a wavelength of incipient concentration waves11,12 as small as 1 to 3 nanometres. The resulting nanoscale alternating tensile and compressive strain fields lead to considerable resistance to dislocation glide. In situ transmission electron microscopy during straining experiments reveals massive dislocation cross-slip from the early stage of plastic deformation, resulting in strong dislocation interactions between multiple slip systems. These deformation mechanisms in the CrFeCoNiPd alloy, which differ markedly from those in the Cantor alloy and other face-centred cubic high-entropy alloys, are promoted by pronounced fluctuations in composition and an increase in stacking-fault energy, leading to higher yield strength without compromising strain hardening and tensile ductility. Mapping atomic-scale element distributions opens opportunities for understanding chemical structures and thus providing a basis for tuning composition and atomic configurations to obtain outstanding mechanical properties. In high-entropy alloys, atomic-resolution chemical mapping shows that swapping some of the atoms for larger, more electronegative elements results in atomic-scale modulations that produce higher yield strength, excellent strain hardening and ductility.

Journal ArticleDOI
04 Apr 2019-Cell
TL;DR: The findings show that exosomal PD-L1 represents an unexplored therapeutic target, which could overcome resistance to current antibody approaches, and is described as a potential new therapeutic target for cancer patients.

Journal ArticleDOI
TL;DR: The Community Land Model (CLM) is the land component of the Community Earth System Model (CESM) and is used in several global and regional modeling systems.
Abstract: The Community Land Model (CLM) is the land component of the Community Earth System Model (CESM) and is used in several global and regional modeling systems. In this paper, we introduce model developments included in CLM version 5 (CLM5), which is the default land component for CESM2. We assess an ensemble of simulations, including prescribed and prognostic vegetation state, multiple forcing data sets, and CLM4, CLM4.5, and CLM5, against a range of metrics including from the International Land Model Benchmarking (ILAMBv2) package. CLM5 includes new and updated processes and parameterizations: (1) dynamic land units, (2) updated parameterizations and structure for hydrology and snow (spatially explicit soil depth, dry surface layer, revised groundwater scheme, revised canopy interception and canopy snow processes, updated fresh snow density, simple firn model, and Model for Scale Adaptive River Transport), (3) plant hydraulics and hydraulic redistribution, (4) revised nitrogen cycling (flexible leaf stoichiometry, leaf N optimization for photosynthesis, and carbon costs for plant nitrogen uptake), (5) global crop model with six crop types and time‐evolving irrigated areas and fertilization rates, (6) updated urban building energy, (7) carbon isotopes, and (8) updated stomatal physiology. New optional features include demographically structured dynamic vegetation model (Functionally Assembled Terrestrial Ecosystem Simulator), ozone damage to plants, and fire trace gas emissions coupling to the atmosphere. Conclusive establishment of improvement or degradation of individual variables or metrics is challenged by forcing uncertainty, parametric uncertainty, and model structural complexity, but the multivariate metrics presented here suggest a general broad improvement from CLM4 to CLM5.

Journal ArticleDOI
01 Jul 2019
TL;DR: In this article, the authors describe progress and identify mechanistic questions and performance metrics for catalysts that can enable carbon-neutral renewable energy storage and utilization, and discuss design principles for improved activity and selectivity.
Abstract: Electrochemical carbon dioxide recycling provides an attractive approach to synthesizing fuels and chemical feedstocks using renewable energy. On the path to deploying this technology, basic and applied scientific hurdles remain. Integrating catalytic design with mechanistic understanding yields scientific insights and progresses the technology towards industrial relevance. Catalysts must be able to generate valuable carbon-based products with better selectivity, lower overpotentials and improved current densities with extended operation. Here, we describe progress and identify mechanistic questions and performance metrics for catalysts that can enable carbon-neutral renewable energy storage and utilization. Electrochemical carbon dioxide reduction is an attractive approach for obtaining fuels and chemical feedstocks using renewable energy. In this Review, the authors describe progress so far, identify mechanistic questions and performance metrics, and discuss design principles for improved activity and selectivity.

Journal ArticleDOI
03 Jul 2019-Nature
TL;DR: It is shown that materials science knowledge present in the published literature can be efficiently encoded as information-dense word embeddings11–13 (vector representations of words) without human labelling or supervision, suggesting that latent knowledge regarding future discoveries is to a large extent embedded in past publications.
Abstract: The overwhelming majority of scientific knowledge is published as text, which is difficult to analyse by either traditional statistical analysis or modern machine learning methods. By contrast, the main source of machine-interpretable data for the materials research community has come from structured property databases1,2, which encompass only a small fraction of the knowledge present in the research literature. Beyond property values, publications contain valuable knowledge regarding the connections and relationships between data items as interpreted by the authors. To improve the identification and use of this knowledge, several studies have focused on the retrieval of information from scientific literature using supervised natural language processing3-10, which requires large hand-labelled datasets for training. Here we show that materials science knowledge present in the published literature can be efficiently encoded as information-dense word embeddings11-13 (vector representations of words) without human labelling or supervision. Without any explicit insertion of chemical knowledge, these embeddings capture complex materials science concepts such as the underlying structure of the periodic table and structure-property relationships in materials. Furthermore, we demonstrate that an unsupervised method can recommend materials for functional applications several years before their discovery. This suggests that latent knowledge regarding future discoveries is to a large extent embedded in past publications. Our findings highlight the possibility of extracting knowledge and relationships from the massive body of scientific literature in a collective manner, and point towards a generalized approach to the mining of scientific literature.

Journal ArticleDOI
TL;DR: A new three-dimensional map of dust reddening, based on Gaia parallaxes and stellar photometry from Pan-STARRS 1 and 2MASS, is presented, which infer the distances, reddenings and types of 799 million stars.
Abstract: We present a new three-dimensional map of dust reddening, based on Gaia parallaxes and stellar photometry from Pan-STARRS 1 and 2MASS. This map covers the sky north of a declination of -30 degrees, out to a distance of several kiloparsecs. This new map contains three major improvements over our previous work. First, the inclusion of Gaia parallaxes dramatically improves distance estimates to nearby stars. Second, we incorporate a spatial prior that correlates the dust density across nearby sightlines. This produces a smoother map, with more isotropic clouds and smaller distance uncertainties, particularly to clouds within the nearest kiloparsec. Third, we infer the dust density with a distance resolution that is four times finer than in our previous work, to accommodate the improvements in signal-to-noise enabled by the other improvements. As part of this work, we infer the distances, reddenings and types of 799 million stars. We obtain typical reddening uncertainties that are ~30% smaller than those reported in the Gaia DR2 catalog, reflecting the greater number of photometric passbands that enter into our analysis. Our 3D dust map can be accessed at this https URL or through the Python package "dustmaps," and can be queried interactively at this http URL. Our catalog of stellar parameters can be accessed at this https URL.

Journal ArticleDOI
TL;DR: A wearable and flexible sweat-sensing platform toward real-time multiplexed perspiration analysis is developed and an integrated iontophoresis module on a wearable sweat sensor could enable autonomous and programmed sweat extraction.
Abstract: Wearable sensors play a crucial role in realizing personalized medicine, as they can continuously collect data from the human body to capture meaningful health status changes in time for preventive intervention. However, motion artifacts and mechanical mismatches between conventional rigid electronic materials and soft skin often lead to substantial sensor errors during epidermal measurement. Because of its unique properties such as high flexibility and conformability, flexible electronics enables a natural interaction between electronics and the human body. In this Account, we summarize our recent studies on the design of flexible electronic devices and systems for physical and chemical monitoring. Material innovation, sensor design, device fabrication, system integration, and human studies employed toward continuous and noninvasive wearable sensing are discussed. A flexible electronic device typically contains several key components, including the substrate, the active layer, and the interface layer. The inorganic-nanomaterials-based active layer (prepared by a physical transfer or solution process) is shown to have good physicochemical properties, electron/hole mobility, and mechanical strength. Flexible electronics based on the printed and transferred active materials has shown great promise for physical sensing. For example, integrating a nanowire transistor array for the active matrix and a conductive pressure-sensitive rubber enables tactile pressure mapping; tactile-pressure-sensitive e-skin and organic light-emitting diodes can be integrated for instantaneous pressure visualization. Such printed sensors have been applied as wearable patches to monitor skin temperature, electrocardiograms, and human activities. In addition, liquid metals could serve as an attractive candidate for flexible electronics because of their excellent conductivity, flexibility, and stretchability. Liquid-metal-enabled electronics (based on liquid-liquid heterojunctions and embedded microchannels) have been utilized to monitor a wide range of physiological parameters (e.g., pulse and temperature). Despite the rapid growth in wearable sensing technologies, there is an urgent need for the development of flexible devices that can capture molecular data from the human body to retrieve more insightful health information. We have developed a wearable and flexible sweat-sensing platform toward real-time multiplexed perspiration analysis. An integrated iontophoresis module on a wearable sweat sensor could enable autonomous and programmed sweat extraction. A microfluidics-based sensing system was demonstrated for sweat sampling, sensing, and sweat rate analysis. Roll-to-roll gravure printing allows for mass production of high-performance flexible chemical sensors at low cost. These wearable and flexible sweat sensors have shown great promise in dehydration monitoring, cystic fibrosis diagnosis, drug monitoring, and noninvasive glucose monitoring. Future work in this field should focus on designing robust wearable sensing systems to accurately collect data from the human body and on large-scale human studies to determine how the measured physical and chemical information relates to the individual's specific health conditions. Further research in these directions, along with the large sets of data collected via these wearable and flexible sensing technologies, will have a significant impact on future personalized healthcare.

Journal ArticleDOI
TL;DR: In this paper, the authors review the principal mechanical properties of multi-principal element alloys with emphasis on the face-centered cubic systems, such as the CrCoNi-based alloys, and suggest their favorable mechanical properties and ease of processing by conventional means suggest extensive utilization in many future structural applications.

Journal ArticleDOI
TL;DR: Guiding of relativistically intense laser pulses with peak power of 0.85 PW over 15 diffraction lengths was demonstrated by increasing the focusing strength of a capillary discharge waveguide using laser inverse bremsstrahlung heating.
Abstract: Guiding of relativistically intense laser pulses with peak power of 0.85 PW over 15 diffraction lengths was demonstrated by increasing the focusing strength of a capillary discharge waveguide using laser inverse bremsstrahlung heating. This allowed for the production of electron beams with quasimonoenergetic peaks up to 7.8 GeV, double the energy that was previously demonstrated. Charge was 5 pC at 7.8 GeV and up to 62 pC in 6 GeV peaks, and typical beam divergence was 0.2 mrad.

Journal ArticleDOI
TL;DR: A general cascade anchoring strategy for the mass production of a series of metal-Nx SACs with a metal loading up to 12.1 wt%, which paves a universal way to produce stable M-NC SAC with high-density metal- Nx sites for diverse high-performance applications.
Abstract: Although single-atomically dispersed metal-Nx on carbon support (M-NC) has great potential in heterogeneous catalysis, the scalable synthesis of such single-atom catalysts (SACs) with high-loading metal-Nx is greatly challenging since the loading and single-atomic dispersion have to be balanced at high temperature for forming metal-Nx. Herein, we develop a general cascade anchoring strategy for the mass production of a series of M-NC SACs with a metal loading up to 12.1 wt%. Systematic investigation reveals that the chelation of metal ions, physical isolation of chelate complex upon high loading, and the binding with N-species at elevated temperature are essential to achieving high-loading M-NC SACs. As a demonstration, high-loading Fe-NC SAC shows superior electrocatalytic performance for O2 reduction and Ni-NC SAC exhibits high electrocatalytic activity for CO2 reduction. The strategy paves a universal way to produce stable M-NC SAC with high-density metal-Nx sites for diverse high-performance applications.

Journal ArticleDOI
TL;DR: The HPO’s interoperability with other ontologies has enabled it to be used to improve diagnostic accuracy by incorporating model organism data and plays a key role in the popular Exomiser tool, which identifies potential disease-causing variants from whole-exome or whole-genome sequencing data.
Abstract: The Human Phenotype Ontology (HPO)-a standardized vocabulary of phenotypic abnormalities associated with 7000+ diseases-is used by thousands of researchers, clinicians, informaticians and electronic health record systems around the world. Its detailed descriptions of clinical abnormalities and computable disease definitions have made HPO the de facto standard for deep phenotyping in the field of rare disease. The HPO's interoperability with other ontologies has enabled it to be used to improve diagnostic accuracy by incorporating model organism data. It also plays a key role in the popular Exomiser tool, which identifies potential disease-causing variants from whole-exome or whole-genome sequencing data. Since the HPO was first introduced in 2008, its users have become both more numerous and more diverse. To meet these emerging needs, the project has added new content, language translations, mappings and computational tooling, as well as integrations with external community data. The HPO continues to collaborate with clinical adopters to improve specific areas of the ontology and extend standardized disease descriptions. The newly redesigned HPO website (www.human-phenotype-ontology.org) simplifies browsing terms and exploring clinical features, diseases, and human genes.

Journal ArticleDOI
A. Abada1, Marcello Abbrescia2, Marcello Abbrescia3, Shehu S. AbdusSalam4  +1491 moreInstitutions (239)
TL;DR: In this article, the authors present the second volume of the Future Circular Collider Conceptual Design Report, devoted to the electron-positron collider FCC-ee, and present the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan.
Abstract: In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics.

Journal ArticleDOI
TL;DR: In this article, the authors reported the first direct observation of chemical short-range order (SRO) in the CrCoNi medium/high entropy alloys (MEA/HEA) using high resolution and energy-filtered transmission electron microscopy.
Abstract: Traditional metallic alloys are mixtures of elements where the atoms of minority species tend to distribute randomly if they are below their solubility limit, or lead to the formation of secondary phases if they are above it. Recently, the concept of medium/high entropy alloys (MEA/HEA) has expanded this view, as these materials are single-phase solid solutions of generally equiatomic mixtures of metallic elements that have been shown to display enhanced mechanical properties. However, the question has remained as to how random these solid solutions actually are, with the influence of chemical short-range order (SRO) suggested in computational simulations but not seen experimentally. Here we report the first direct observation of SRO in the CrCoNi MEA using high resolution and energy-filtered transmission electron microscopy. Increasing amounts of SRO give rise to both higher stacking fault energy and hardness. These discoveries suggest that the degree of chemical ordering at the nanometer scale can be tailored through thermomechanical processing, providing a new avenue for tuning the mechanical properties of MEA/HEAs.

Journal ArticleDOI
Arjun Dey, David J. Schlegel1, Dustin Lang2, Dustin Lang3  +162 moreInstitutions (52)
TL;DR: The DESI Legacy Imaging Surveys (http://legacysurvey.org/) as mentioned in this paper is a combination of three public projects (the Dark Energy Camera Legacy Survey, the Beijing-Arizona Sky Survey, and the Mayall z-band Legacy Survey) that will jointly image ≈14,000 deg2 of the extragalactic sky visible from the northern hemisphere in three optical bands (g, r, and z) using telescopes at the Kitt Peak National Observatory and the Cerro Tololo Inter-American Observatory.
Abstract: The DESI Legacy Imaging Surveys (http://legacysurvey.org/) are a combination of three public projects (the Dark Energy Camera Legacy Survey, the Beijing–Arizona Sky Survey, and the Mayall z-band Legacy Survey) that will jointly image ≈14,000 deg2 of the extragalactic sky visible from the northern hemisphere in three optical bands (g, r, and z) using telescopes at the Kitt Peak National Observatory and the Cerro Tololo Inter-American Observatory. The combined survey footprint is split into two contiguous areas by the Galactic plane. The optical imaging is conducted using a unique strategy of dynamically adjusting the exposure times and pointing selection during observing that results in a survey of nearly uniform depth. In addition to calibrated images, the project is delivering a catalog, constructed by using a probabilistic inference-based approach to estimate source shapes and brightnesses. The catalog includes photometry from the grz optical bands and from four mid-infrared bands (at 3.4, 4.6, 12, and 22 μm) observed by the Wide-field Infrared Survey Explorer satellite during its full operational lifetime. The project plans two public data releases each year. All the software used to generate the catalogs is also released with the data. This paper provides an overview of the Legacy Surveys project.

Journal ArticleDOI
TL;DR: In this paper, a tunable Mott insulator in a trilayer graphene heterostructure with a moire superlattice was proposed, where the competition between the Coulomb interaction and the kinetic energy can be varied in situ.
Abstract: The Mott insulator is a central concept in strongly correlated physics and manifests when the repulsive Coulomb interaction between electrons dominates over their kinetic energy1,2. Doping additional carriers into a Mott insulator can give rise to other correlated phenomena such as unusual magnetism and even high-temperature superconductivity2,3. A tunable Mott insulator, where the competition between the Coulomb interaction and the kinetic energy can be varied in situ, can provide an invaluable model system for the study of Mott physics. Here we report the possible realization of such a tunable Mott insulator in a trilayer graphene heterostructure with a moire superlattice. The combination of the cubic energy dispersion in ABC-stacked trilayer graphene4–8 and the narrow electronic minibands induced by the moire potential9–15 leads to the observation of insulating states at the predicted band fillings for the Mott insulator. Moreover, the insulating states in the heterostructure can be tuned: the bandgap can be modulated by a vertical electrical field, and at the same time the electron doping can be modified by a gate to fill the band from one insulating state to another. This opens up exciting opportunities to explore strongly correlated phenomena in two-dimensional moire superlattice heterostructures. Report of the likely observation of a Mott insulator in trilayer graphene with a moire potential. The Mott state can be tuned between different filling fractions via gating, which will enable the careful study of this paradigmatic many-body state.

Journal ArticleDOI
TL;DR: In this article, the authors measured cosmic weak lensing shear power spectra with the Subaru Hyper Suprime-Cam (HSC) survey first-year shear catalog covering 137 degrees of the sky.
Abstract: We measure cosmic weak lensing shear power spectra with the Subaru Hyper Suprime-Cam (HSC) survey first-year shear catalog covering 137 deg^2 of the sky. Thanks to the high effective galaxy number density of ∼17 arcmin^−2, even after conservative cuts such as a magnitude cut of i < 24.5 and photometric redshift cut of 0.3 ≤ z ≤ 1.5, we obtain a high-significance measurement of the cosmic shear power spectra in four tomographic redshift bins, achieving a total signal-to-noise ratio of 16 in the multipole range 300 ≤ l ≤ 1900. We carefully account for various uncertainties in our analysis including the intrinsic alignment of galaxies, scatters and biases in photometric redshifts, residual uncertainties in the shear measurement, and modeling of the matter power spectrum. The accuracy of our power spectrum measurement method as well as our analytic model of the covariance matrix are tested against realistic mock shear catalogs. For a flat Λ cold dark matter model, we find |$S\,_{8}\equiv \sigma _8(\Omega _{\rm m}/0.3)^\alpha =0.800^{+0.029}_{-0.028}$| for α = 0.45 (⁠|$S\,_8=0.780^{+0.030}_{-0.033}$| for α = 0.5) from our HSC tomographic cosmic shear analysis alone. In comparison with Planck cosmic microwave background constraints, our results prefer slightly lower values of S_8, although metrics such as the Bayesian evidence ratio test do not show significant evidence for discordance between these results. We study the effect of possible additional systematic errors that are unaccounted for in our fiducial cosmic shear analysis, and find that they can shift the best-fit values of S_8 by up to ∼0.6 σ in both directions. The full HSC survey data will contain several times more area, and will lead to significantly improved cosmological constraints.

Journal ArticleDOI
20 Sep 2019-Science
TL;DR: In this article, angle-resolved photoemission spectroscopy was used to visualize the electronic structure of the ferromagnetic crystal Co3Sn2S2 and discovered its characteristic surface Fermi-arcs and linear bulk band dispersions across the Weyl points.
Abstract: Weyl semimetals are crystalline solids that host emergent relativistic Weyl fermions and have characteristic surface Fermi-arcs in their electronic structure. Weyl semimetals with broken time reversal symmetry are difficult to identify unambiguously. In this work, using angle-resolved photoemission spectroscopy, we visualized the electronic structure of the ferromagnetic crystal Co3Sn2S2 and discovered its characteristic surface Fermi-arcs and linear bulk band dispersions across the Weyl points. These results establish Co3Sn2S2 as a magnetic Weyl semimetal that may serve as a platform for realizing phenomena such as chiral magnetic effects, unusually large anomalous Hall effect and quantum anomalous Hall effect.

Journal ArticleDOI
17 Jul 2019-Nature
TL;DR: In this article, the authors reported signatures of tunable superconductivity in an ABC-trilayer graphene (TLG) and hexagonal boron nitride (hBN) moire superlattice.
Abstract: Understanding the mechanism of high-transition-temperature (high-Tc) superconductivity is a central problem in condensed matter physics. It is often speculated that high-Tc superconductivity arises in a doped Mott insulator1 as described by the Hubbard model2-4. An exact solution of the Hubbard model, however, is extremely challenging owing to the strong electron-electron correlation in Mott insulators. Therefore, it is highly desirable to study a tunable Hubbard system, in which systematic investigations of the unconventional superconductivity and its evolution with the Hubbard parameters can deepen our understanding of the Hubbard model. Here we report signatures of tunable superconductivity in an ABC-trilayer graphene (TLG) and hexagonal boron nitride (hBN) moire superlattice. Unlike in 'magic angle' twisted bilayer graphene, theoretical calculations show that under a vertical displacement field, the ABC-TLG/hBN heterostructure features an isolated flat valence miniband associated with a Hubbard model on a triangular superlattice5,6 where the bandwidth can be tuned continuously with the vertical displacement field. Upon applying such a displacement field we find experimentally that the ABC-TLG/hBN superlattice displays Mott insulating states below 20 kelvin at one-quarter and one-half fillings of the states, corresponding to one and two holes per unit cell, respectively. Upon further cooling, signatures of superconductivity ('domes') emerge below 1 kelvin for the electron- and hole-doped sides of the one-quarter-filling Mott state. The electronic behaviour in the ABC-TLG/hBN superlattice is expected to depend sensitively on the interplay between the electron-electron interaction and the miniband bandwidth. By varying the vertical displacement field, we demonstrate transitions from the candidate superconductor to Mott insulator and metallic phases. Our study shows that ABC-TLG/hBN heterostructures offer attractive model systems in which to explore rich correlated behaviour emerging in the tunable triangular Hubbard model.