scispace - formally typeset
Search or ask a question
Institution

Lehigh University

EducationBethlehem, Pennsylvania, United States
About: Lehigh University is a education organization based out in Bethlehem, Pennsylvania, United States. It is known for research contribution in the topics: Catalysis & Fracture mechanics. The organization has 12684 authors who have published 26550 publications receiving 770061 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors examine auditor independence in the banking industry by analyzing the relation between fees paid to auditors and the extent of earnings management through loan loss provisions (LLP), and find that auditor fee dependence on the audit client is associated with abnormal LLP and is a potential threat to auditor independence for small banks.
Abstract: We examine auditor independence in the banking industry by analyzing the relation between fees paid to auditors and the extent of earnings management through loan loss provisions (LLP). We also examine whether this relation differs across large banks whose managements are required under the Federal Deposit Insurance Corporation Improvement Act to evaluate internal control over financial reporting and whose auditors must attest to the effectiveness of such internal controls, and small banks that are not subject to those requirements. We find that unexpected auditor fees are unrelated to earnings management for large banks. For small banks, we find greater earnings management via under-provisioning of LLP by banks that pay higher unexpected total and nonaudit fees to the auditor. These results suggest that auditor fee dependence on the audit client is associated with earnings management via abnormal LLP and is a potential threat to auditor independence for small banks. Our findings are relevant to...

176 citations

Journal ArticleDOI
TL;DR: A particle-cell hybrid model is developed to model NP transport, dispersion, and binding dynamics in blood suspension, which will provide mechanistic insights on the nanomedicine design for targeted drug delivery applications.
Abstract: Multifunctional nanomedicine holds considerable promise as the next generation of medicine that allows for targeted therapy with minimal toxicity. Most current studies on Nanoparticle (NP) drug delivery consider a Newtonian fluid with suspending NPs. However, blood is a complex biological fluid composed of deformable cells, proteins, platelets, and plasma. For blood flow in capillaries, arterioles and venules, the particulate nature of the blood needs to be considered in the delivery process. The existence of the cell-free-layer and NP-cell interaction will largely influence both the dispersion and binding rates, thus impact targeted delivery efficacy. In this paper, a particle-cell hybrid model is developed to model NP transport, dispersion, and binding dynamics in blood suspension. The motion and deformation of red blood cells is captured through the Immersed Finite Element Method. The motion and adhesion of individual NPs are tracked through Brownian adhesion dynamics. A mapping algorithm and an interaction potential function are introduced to consider the cell-particle collision. NP dispersion and binding rates are derived from the developed model under various rheology conditions. The influence of red blood cells, vascular flow rate, and particle size on NP distribution and delivery efficacy is characterized. A non-uniform NP distribution profile with higher particle concentration near the vessel wall is observed. Such distribution leads to over 50% higher particle binding rate compared to the case without RBC considered. The tumbling motion of RBCs in the core region of the capillary is found to enhance NP dispersion, with dispersion rate increases as shear rate increases. Results from this study contribute to the fundamental understanding and knowledge on how the particulate nature of blood influences NP delivery, which will provide mechanistic insights on the nanomedicine design for targeted drug delivery applications.

176 citations

Journal ArticleDOI
Angela V. Gallego-Sala1, Dan J. Charman1, Simon Brewer2, Susan Page3, I. Colin Prentice4, Pierre Friedlingstein1, Steve Moreton, Matthew J. Amesbury1, David W. Beilman5, Svante Björck6, Tatiana Blyakharchuk7, Christopher Bochicchio8, Robert K. Booth8, Joan Bunbury9, Philip Camill10, Donna Carless1, Rodney A. Chimner, Michael J. Clifford, Elizabeth L. Cressey1, Colin J Courtney-Mustaphi11, Colin J Courtney-Mustaphi12, François De Vleeschouwer13, Rixt de Jong6, Barbara Fiałkiewicz-Kozieł14, Sarah A. Finkelstein15, Michelle Garneau16, Esther Githumbi11, John Hribjlan, James R. Holmquist17, Paul D.M. Hughes18, Chris D. Jones19, Miriam C. Jones20, Edgar Karofeld21, Eric S. Klein22, Ulla Kokfelt6, Atte Korhola23, Terri Lacourse24, Gaël Le Roux13, Mariusz Lamentowicz14, David Large25, Martin Lavoie26, Julie Loisel27, Helen Mackay28, Glen M. MacDonald17, Markku Mäkilä29, Gabriel Magnan16, Rob Marchant11, Katarzyna Marcisz30, Katarzyna Marcisz14, Antonio Martínez Cortizas31, Charly Massa5, Paul Mathijssen23, D. Mauquoy32, Tim Mighall32, Fraser J.G. Mitchell33, Patrick Moss34, Jonathan E. Nichols35, Pirita Oksanen36, Lisa C. Orme1, Lisa C. Orme37, Maara S. Packalen38, Stephen Robinson39, Thomas P. Roland1, Nicole K. Sanderson1, A. Britta K. Sannel40, Noemí Silva-Sánchez31, Natascha Steinberg1, Graeme T. Swindles41, T. Edward Turner42, T. Edward Turner41, Joanna Uglow1, Minna Väliranta23, Simon van Bellen16, Marjolein van der Linden, Bas van Geel43, Guoping Wang44, Zicheng Yu45, Zicheng Yu8, Joana Zaragoza-Castells1, Yan Zhao44 
TL;DR: This article examined the global relationship between peatland carbon accumulation rates during the last millennium and planetary-scale climate space and found a positive relationship between carbon accumulation and cumulative photosynthetically active radiation during the growing season for mid-to high-latitude peatlands in both hemispheres.
Abstract: The carbon sink potential of peatlands depends on the balance of carbon uptake by plants and microbial decomposition The rates of both these processes will increase with warming but it remains unclear which will dominate the global peatland response Here we examine the global relationship between peatland carbon accumulation rates during the last millennium and planetary-scale climate space A positive relationship is found between carbon accumulation and cumulative photosynthetically active radiation during the growing season for mid- to high-latitude peatlands in both hemispheres However, this relationship reverses at lower latitudes, suggesting that carbon accumulation is lower under the warmest climate regimes Projections under Representative Concentration Pathway (RCP)26 and RCP85 scenarios indicate that the present-day global sink will increase slightly until around ad 2100 but decline thereafter Peatlands will remain a carbon sink in the future, but their response to warming switches from a negative to a positive climate feedback (decreased carbon sink with warming) at the end of the twenty-first century

176 citations

Journal ArticleDOI
TL;DR: The authors proposed a typology to classify customer participation into three categories (mandatory, replaceable, and voluntary) and demonstrate how this proposed typology improves the conceptual and empirical clarity of CP research.
Abstract: Extant service research considers several aspects of customer participation (CP) but lacks a clear and inclusive typology that delineates CP’s domain, scope, or boundaries. To address this gap, the authors build on a review of extant literature and propose a typology to classify CP into three categories—mandatory, replaceable, and voluntary. They demonstrate how this proposed typology improves the conceptual and empirical clarity of CP research. More specifically, the authors (1) suggest using “customer participation” to replace other terminologies such as coproduction and cocreation to reduce confusion; (2) conceptualize CP, customer engagement, and customer innovation as related but distinct concepts; (3) use the proposed typology to extend existing conceptualizations, integrate prior empirical research, and reconcile conflicting findings. Building on the enhanced conceptual clarity, managerial implications and future research directions are discussed.

176 citations


Authors

Showing all 12785 results

NameH-indexPapersCitations
Yang Yang1712644153049
Gang Chen1673372149819
Yi Yang143245692268
Mark D. Griffiths124123861335
Michael Gill12181086338
Masaki Mori110220066676
Kai Nan An10995351638
James R. Rice10827868943
Vinayak P. Dravid10381743612
Andrew M. Jones10376437253
Israel E. Wachs10342732029
Demetrios N. Christodoulides10070451093
Bert M. Weckhuysen10076740945
José Luis García Fierro100102747228
Mordechai Segev9972940073
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

Pennsylvania State University
196.8K papers, 8.3M citations

94% related

University of Maryland, College Park
155.9K papers, 7.2M citations

94% related

Purdue University
163.5K papers, 5.7M citations

94% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202338
2022140
20211,040
20201,054
2019933
2018935