scispace - formally typeset
Search or ask a question
Institution

Lehigh University

EducationBethlehem, Pennsylvania, United States
About: Lehigh University is a education organization based out in Bethlehem, Pennsylvania, United States. It is known for research contribution in the topics: Catalysis & Fracture mechanics. The organization has 12684 authors who have published 26550 publications receiving 770061 citations.


Papers
More filters
Journal ArticleDOI
01 Oct 2001
TL;DR: The primary focus of the paper is the Lehigh Omnidirectional Tracking System (LOTS) and its components, which includes adaptive multibackground modeling, quasi-connected components (a novel approach to spatio-temporal grouping), background subtraction analyses, and an overall system evaluation.
Abstract: Autonomous video surveillance and monitoring of human subjects in video has a rich history. Many deployed systems are able to reliably track human motion in indoor and controlled outdoor environments, e.g., parking lots and university campuses. A challenging domain of vital military importance is the surveillance of noncooperative and camouflaged targets within cluttered outdoor settings. These situations require both sensitivity and a very wide field of view and, therefore, are a natural application of omnidirectional video. Fundamentally, target finding is a change detection problem. Detection of camouflaged and adversarial targets implies the need for extreme sensitivity. Unfortunately, blind change detection in woods and fields may lead to a high fraction of false alarms, since natural scene motion and lighting changes produce highly dynamic scenes. Naturally, this desire for high sensitivity leads to a direct tradeoff between miss detections and false alarms. This paper discusses the current state of the art in video-based target detection, including an analysis of background adaptation techniques. The primary focus of the paper is the Lehigh Omnidirectional Tracking System (LOTS) and its components. This includes adaptive multibackground modeling, quasi-connected components (a novel approach to spatio-temporal grouping), background subtraction analyses, and an overall system evaluation.

168 citations

Journal ArticleDOI
16 Jun 2009
TL;DR: A cost-effective route to build electrically as well as optically controlled modulators in silicon photonics is reviewed, and two key devices in communications are exemplarily regarded in more detail.
Abstract: A cost-effective route to build electrically as well as optically controlled modulators in silicon photonics is reviewed. The technology enables modulation at bit rates beyond 100 Gbit/s. This platform relies on the well-established silicon-based complementary metal-oxide-semiconductor processing technology for fabricating silicon-on-insulator (SOI) waveguides, while an organic cladding layer adds the required nonlinearity. The strength of this hybrid technology is discussed, and two key devices in communications are exemplarily regarded in more detail. The first device demonstrates demultiplexing of a 120 Gbit/s signal by means of four-wave mixing in a slot-waveguide that has been filled with a highly nonlinear chi(3)-organic material. The second device is a 100 Gbit/s/1 V electrooptic modulator based on a slow-light SOI photonic crystal covered with a chi(2) -nonlinear organic material.

168 citations

Journal ArticleDOI
01 Jun 1993-Zeolites
TL;DR: In this paper, the titania-substituted silicalites, prepared from two different silicalite precursors, were characterized using Raman spectroscopy, X-ray absorption spectrography, pyridine adsorption, and methanol oxidation.

168 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a CANDECOMP/PARAFAC decomposition-based method for channel estimation for mmWave MIMO-OFDM systems, where both the base station (BS) and the mobile station (MS) employ large antenna arrays for directional precoding/beamforming.
Abstract: We consider the problem of downlink channel estimation for millimeter wave (mmWave) MIMO-OFDM systems, where both the base station (BS) and the mobile station (MS) employ large antenna arrays for directional precoding/beamforming. Hybrid analog and digital beamforming structures are employed in order to offer a compromise between hardware complexity and system performance. Different from most existing studies that are concerned with narrowband channels, we consider estimation of wideband mmWave channels with frequency selectivity, which is more appropriate for mmWave MIMO-OFDM systems. By exploiting the sparse scattering nature of mmWave channels, we propose a CANDECOMP/PARAFAC (CP) decomposition-based method for channel parameter estimation (including angles of arrival/departure, time delays, and fading coefficients). In our proposed method, the received signal at the MS is expressed as a third-order tensor. We show that the tensor has the form of a low-rank CP, and the channel parameters can be estimated from the associated factor matrices. Our analysis reveals that the uniqueness of the CP decomposition can be guaranteed even when the size of the tensor is small. Hence the proposed method has the potential to achieve substantial training overhead reduction. We also develop Cramer-Rao bound (CRB) results for channel parameters and compare our proposed method with a compressed sensing-based method. Simulation results show that the proposed method attains mean square errors that are very close to their associated CRBs and present a clear advantage over the compressed sensing-based method.

168 citations

Journal ArticleDOI
13 Jul 2012-Science
TL;DR: Feedbacks regulating Cdc42 oscillations and spatial self-organization appear to provide a flexible mechanism for fission yeast cells to explore polarization states and to control their morphology.
Abstract: Cells promote polarized growth by activation of Rho-family protein Cdc42 at the cell membrane. We combined experiments and modeling to study bipolar growth initiation in fission yeast. Concentrations of a fluorescent marker for active Cdc42, Cdc42 protein, Cdc42-activator Scd1, and scaffold protein Scd2 exhibited anticorrelated fluctuations and oscillations with a 5-minute average period at polarized cell tips. These dynamics indicate competition for active Cdc42 or its regulators and the presence of positive and delayed negative feedbacks. Cdc42 oscillations and spatial distribution were sensitive to the amounts of Cdc42-activator Gef1 and to the activity of Cdc42-dependent kinase Pak1, a negative regulator. Feedbacks regulating Cdc42 oscillations and spatial self-organization appear to provide a flexible mechanism for fission yeast cells to explore polarization states and to control their morphology.

168 citations


Authors

Showing all 12785 results

NameH-indexPapersCitations
Yang Yang1712644153049
Gang Chen1673372149819
Yi Yang143245692268
Mark D. Griffiths124123861335
Michael Gill12181086338
Masaki Mori110220066676
Kai Nan An10995351638
James R. Rice10827868943
Vinayak P. Dravid10381743612
Andrew M. Jones10376437253
Israel E. Wachs10342732029
Demetrios N. Christodoulides10070451093
Bert M. Weckhuysen10076740945
José Luis García Fierro100102747228
Mordechai Segev9972940073
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

Pennsylvania State University
196.8K papers, 8.3M citations

94% related

University of Maryland, College Park
155.9K papers, 7.2M citations

94% related

Purdue University
163.5K papers, 5.7M citations

94% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202338
2022140
20211,040
20201,054
2019933
2018935