scispace - formally typeset
Search or ask a question
Institution

Leibniz University of Hanover

EducationHanover, Niedersachsen, Germany
About: Leibniz University of Hanover is a education organization based out in Hanover, Niedersachsen, Germany. It is known for research contribution in the topics: Finite element method & Computer science. The organization has 14283 authors who have published 29845 publications receiving 682152 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This work proposes a hybrid tracker that combines video with a small number of inertial units to compensate for the drawbacks of each sensor type and obtains drift-free and accurate position information from video data and gets accurate limb orientations and good performance under fast motions from inertial sensors.
Abstract: In this work, we present an approach to fuse video with sparse orientation data obtained from inertial sensors to improve and stabilize full-body human motion capture. Even though video data is a strong cue for motion analysis, tracking artifacts occur frequently due to ambiguities in the images, rapid motions, occlusions or noise. As a complementary data source, inertial sensors allow for accurate estimation of limb orientations even under fast motions. However, accurate position information cannot be obtained in continuous operation. Therefore, we propose a hybrid tracker that combines video with a small number of inertial units to compensate for the drawbacks of each sensor type: on the one hand, we obtain drift-free and accurate position information from video data and, on the other hand, we obtain accurate limb orientations and good performance under fast motions from inertial sensors. In several experiments we demonstrate the increased performance and stability of our human motion tracker.

145 citations

Journal ArticleDOI
TL;DR: The inhibitory effect of indigenous silicic acid in the soil solution on As uptake was clearly shown, implying that soils with high plant available Si contents resulted in low plant As contents and that Si application to soils may decrease the As content of rice.
Abstract: Paddy rice is a global staple food which in some circumstances can contain high levels of the toxic element arsenic (As). In order to elucidate factors influencing As dissolution in the soil solution during paddy rice cultivation, rice (Oryza sativa L. "Selenio") was cultivated to maturity in six paddy soils in the greenhouse in 2005 and 2006. Concentrations of Mn, Fe, As, P, and silicic acid in soil solution and As concentrations in rice straw and polished rice grain were determined. There was a close relationship between Fe and As concentrations in the soil solution, suggesting that the major part of dissolved As originated from reduced iron-(hydr)oxide. However, in addition to the factors causing As dissolution in the soil, other factors influenced the uptake of As by rice. The inhibitory effect of indigenous silicic acid in the soil solution on As uptake was clearly shown. This implied that soils with high plant available Si contents resulted in low plant As contents and that Si application to soils may decrease the As content of rice.

145 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explore the current nonprofit literature to identify the specific characteristics of strategic orientations and human resources in NPOs and propose an analytical framework that is differentiated into four HRM types.
Abstract: Human resource management (HRM) plays an important role in providing better management for nonprofit organizations (NPOs) Yet little is known about what influences their human resource practices After discussing how the strategic and human-resource-based theoretical approaches are appropriate for analyzing HRM in NPOs, the authors explore the current nonprofit literature to identify the specific characteristics of strategic orientations and human resources in NPOs As a result, the authors propose an analytical framework that is differentiated into four HRM types This framework enables a better understanding of the relationship between the specific characteristics of NPOs and the architecture of HRM

145 citations

Journal ArticleDOI
TL;DR: In this paper, the degradation of organic pollutants in the aqueous medium using semiconductor photocatalysts has become an attractive method for detoxification of water, and a strategy for the suppression of electron-hole pair recombination rate, extention the absorption edge in the visible region and enhancement of photocatalyst efficiency by introducing rare earth metal as a dopant was reported.
Abstract: The degradation of organic pollutants in the aqueous medium using semiconductor photocatalysts has become an attractive method for detoxification of water. ZnO is an efficient photocatalyst with few disadvantages such as: (i) the wide band gap (3.37 eV); and (ii) the fast recombination rate of photogenerated electron–hole pairs which limit the photodegradation efficiency of bare ZnO photocatalyst. Herein, we report a strategy for the suppression of electron–hole pair recombination rate, extention the absorption edge in the visible region and enhancement of photocatalytic efficiency by introducing rare earth metal as a dopant. We present the fabrication of pure and Er/Nd doped ZnO semiconductor photocatalysts with hexagonal wurtzite structure using sol gel method. The prepared photocatalysts were characterized by standard analytical techniques, such as XRD, SEM-EDS, TEM, FTIR, XPS, BET, TGA, DTA, DSC, PL, DRS and UV-vis spectroscopy. The photocatalytic activity of pure and doped ZnO nanoparticles (NPs) was investigated by studying the degradation of two different organic dyes as a function of irradiation time. The results indicate that the photocatalytic activity of doped ZnO was found to be higher than bare ZnO for degradation of dyes. This may be attributed predominantly due to decrease in the recombination rate by the efficient charge separation of photoinduced electron–hole pair as inferred from PL studies. The results also indicate that parameters such as amount of photocatalyst dose, initial pH and different quenchers play a significant role for degradation of model dyes. The synthesized photocatalyst was recycled four times for degradation of dye with very little decrease in efficiency. Interestingly, comparative in vitro antibacterial and anticancer potential of the pure and Er/Nd doped ZnO NPs were also investigated against human pathogenic bacterial strains and various human cancer cell lines. The result of our study clearly revealed that Nd doped ZnO NPs showed better antibacterial as well as anticancer efficacy as compared to pure and Er doped ZnO NPs.

144 citations

Journal ArticleDOI
TL;DR: High grain yield under low-N was consistently associated with higher postanthesis N uptake, increased grain production per unit N accumulated, and an improved N harvest index, and the underlying physiological mechanisms contributing to the N-use efficiency were identified.
Abstract: Maize cultivars with improved grain yields under nitrogen (N) stress are desirable for sub-Saharan African maize growing environments. This study assesses N uptake, N utilization, and the genotype x environment (G x E) interaction of 16 tropical maize (Zea mays L.) hybrids differing in grain yield under low-N conditions. Hybrids were evaluated under low-N, medium-N, and high-N at Harare, Zimbabwe, in 2003 and 2004 and at Kiboko, Kenya, in 2003. At maturity, N accumulation in the aboveground biomass ranged from 47 to 278 kg N ha -1 in various experiments. Grain yields ranged from 1.5 to 4.3 Mg ha -1 and 10.6 to 14.9 Mg ha -1 for the same experiments, respectively. Significant G x E interactions were observed which became more pronounced as the difference in N stress intensity between two environments increased. High grain yield under low-N was consistently associated with higher postanthesis N uptake, increased grain production per unit N accumulated, and an improved N harvest index. Additive main effect and multiplicative interaction analysis identified hybrids with specific adaptation to either low-N or high-N environments. Several hybrids produced high yields under both low-N and high-N conditions. More detailed studies with these hybrids are required to examine the underlying physiological mechanisms contributing to the N-use efficiency.

144 citations


Authors

Showing all 14621 results

NameH-indexPapersCitations
Hyun-Chul Kim1764076183227
Peter Zoller13473476093
J. R. Smith1341335107641
Chao Zhang127311984711
Benjamin William Allen12480787750
J. F. J. van den Brand12377793070
J. H. Hough11790489697
Hans-Peter Seidel112121351080
Karsten Danzmann11275480032
Bruce D. Hammock111140957401
Benno Willke10950874673
Roman Schnabel10858971938
Jan Harms10844776132
Hartmut Grote10843472781
Ik Siong Heng10742371830
Network Information
Related Institutions (5)
Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

95% related

Technische Universität München
123.4K papers, 4M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

RWTH Aachen University
96.2K papers, 2.5M citations

93% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023221
2022520
20212,280
20202,210
20192,105
20181,959