scispace - formally typeset
Search or ask a question
Institution

Leibniz University of Hanover

EducationHanover, Niedersachsen, Germany
About: Leibniz University of Hanover is a education organization based out in Hanover, Niedersachsen, Germany. It is known for research contribution in the topics: Finite element method & Population. The organization has 14283 authors who have published 29845 publications receiving 682152 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is proposed that NtCPIPs act as important susceptibility factors during PVY infection, possibly by recruiting heat shock protein 70 chaperones for viral assembly and/or cellular spread.
Abstract: The capsid protein (CP) of potyviruses is required for various steps during plant infection, such as virion assembly, cell-to-cell movement, and long-distance transport. This suggests a series of compatible interactions with putative host factors which, however, are largely unknown. By using the yeast two-hybrid system the CP from Potato virus Y (PVY) was found to interact with a novel subset of DnaJ-like proteins from tobacco, designated NtCPIPs. Mutational analysis identified the CP core region, previously shown to be essential for virion formation and plasmodesmal trafficking, as the interacting domain. The ability of NtCPIP1 and NtCPIP2a to associate with PVY CP could be confirmed in vitro and was additionally verified in planta by bimolecular fluorescence complementation. The biological significance of the interaction was assayed by PVY infection of agroinfiltrated leaves and transgenic tobacco plants that expressed either full-length or J-domain-deficient variants of NtCPIPs. Transient expression of truncated dominant-interfering NtCPIP2a but not of the functional protein resulted in strongly reduced accumulation of PVY in the inoculated leaf. Consistently, stable overexpression of J-domain-deficient variants of NtCPIP1 and NtCPIP2a dramatically increased the virus resistance of various transgenic lines, indicating a critical role of functional NtCPIPs during PVY infection. The negative effect of impaired NtCPIP function on viral pathogenicity seemed to be the consequence of delayed cell-to-cell movement, as visualized by microprojectile bombardment with green fluorescent protein-tagged PVY. Therefore, we propose that NtCPIPs act as important susceptibility factors during PVY infection, possibly by recruiting heat shock protein 70 chaperones for viral assembly and/or cellular spread.

128 citations

Proceedings ArticleDOI
01 Jun 2016
TL;DR: A new stereo and optical flow dataset is presented to complement existing benchmarks, specifically designed to be representative for urban autonomous driving, including realistic, systematically varied radiometric and geometric challenges which were previously unavailable.
Abstract: Recent advances in autonomous driving require more and more highly realistic reference data, even for difficult situations such as low light and bad weather. We present a new stereo and optical flow dataset to complement existing benchmarks. It was specifically designed to be representative for urban autonomous driving, including realistic, systematically varied radiometric and geometric challenges which were previously unavailable. The accuracy of the ground truth is evaluated based on Monte Carlo simulations yielding full, per-pixel distributions. Interquartile ranges are used as uncertainty measure to create binary masks for arbitrary accuracy thresholds and show that we achieved uncertainties better than those reported for comparable outdoor benchmarks. Binary masks for all dynamically moving regions are supplied with estimated stereo and flow values. An initial public benchmark dataset of 55 manually selected sequences between 19 and 100 frames long are made available in a dedicated website featuring interactive tools for database search, visualization, comparison and benchmarking.

128 citations

Journal ArticleDOI
13 Mar 2014
TL;DR: A new needle steering system capable of automatically reaching targets in 3-D environments while avoiding obstacles and compensating for real-world uncertainties is presented, enabled by an efficient sampling-based rapidly exploring random tree (RRT) planner that achieves orders-of-magnitude reduction in computation time.
Abstract: Steerable needles have the potential to improve the effectiveness of needle-based clinical procedures such as biopsy and drug delivery by improving targeting accuracy and reaching previously inaccessible targets that are behind sensitive or impenetrable anatomical regions. We present a new needle steering system capable of automatically reaching targets in 3-D environments while avoiding obstacles and compensating for real-world uncertainties. Given a specification of anatomical obstacles and a clinical target (e.g., from preoperative medical images), our system plans and controls needle motion in a closed-loop fashion under sensory feedback to optimize a clinical metric. We unify planning and control using a new fast algorithm that continuously replans the needle motion. Our rapid replanning approach is enabled by an efficient sampling-based rapidly exploring random tree (RRT) planner that achieves orders-of-magnitude reduction in computation time compared with prior 3-D approaches by incorporating variable curvature kinematics and a novel distance metric for planning. Our system uses an electromagnetic tracking system to sense the state of the needle tip during the procedure. We experimentally evaluate our needle steering system using tissue phantoms and animal tissue ex vivo. We demonstrate that our rapid replanning strategy successfully guides the needle around obstacles to desired 3-D targets with an average error of less than 3 mm.

128 citations

Journal ArticleDOI
TL;DR: In this article, a new UiO-66-NH2-based MOF was prepared by grafting imidazole-2-carbaldehyde (ICA) to Uo-66 NH2 through a post-synthesis reaction via amine condensation, which showed less BET surface area but a higher CO2/CH4 adsorption selectivity.

128 citations

Book ChapterDOI
24 Sep 2003
TL;DR: The navigation task is a very demanding application for mobile users and the algorithms of present software solutions are based on the established methods of car navigation systems and thus exhibit some inherent disadvantages.
Abstract: The navigation task is a very demanding application for mobile users The algorithms of present software solutions are based on the established methods of car navigation systems and thus exhibit some inherent disadvantages: findings in spatial cognition research have shown that human users need landmarks for an easy and successful wayfinding Typically, however, an object is not a landmark per se, but can be one relative to its environment Unfortunately, these objects are not part of route guidance information systems at the moment

128 citations


Authors

Showing all 14621 results

NameH-indexPapersCitations
Hyun-Chul Kim1764076183227
Peter Zoller13473476093
J. R. Smith1341335107641
Chao Zhang127311984711
Benjamin William Allen12480787750
J. F. J. van den Brand12377793070
J. H. Hough11790489697
Hans-Peter Seidel112121351080
Karsten Danzmann11275480032
Bruce D. Hammock111140957401
Benno Willke10950874673
Roman Schnabel10858971938
Jan Harms10844776132
Hartmut Grote10843472781
Ik Siong Heng10742371830
Network Information
Related Institutions (5)
Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

95% related

Technische Universität München
123.4K papers, 4M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

RWTH Aachen University
96.2K papers, 2.5M citations

93% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023221
2022520
20212,280
20202,210
20192,105
20181,959