scispace - formally typeset
Search or ask a question
Institution

Leibniz University of Hanover

EducationHanover, Niedersachsen, Germany
About: Leibniz University of Hanover is a education organization based out in Hanover, Niedersachsen, Germany. It is known for research contribution in the topics: Finite element method & Population. The organization has 14283 authors who have published 29845 publications receiving 682152 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the population balance is simplified and reduced to a balance equation for the average bubble volume, which is used to predict the rate of bubble breakup and coalescence based on physical principles.
Abstract: Bubble-size distributions and flow fields in bubble columns are calculated numerically. The population balance is simplified and reduced to a balance equation for the average bubble volume. Models developed predict the rate of bubble breakup and coalescence based on physical principles. The flow fields are numerically calculated for bubble columns with cylindrical cross sections using the Euler-Euler method. The newly derived balance equations for the average bubble volumes are implemented into a commercial CFD code. The solutions of the balance equation for high superficial gas velocities result mainly in two fractions: one for the fraction with small and the other for the fraction with large bubble diameters. Both are considered pseudocontinuous phases, in addition to the liquid phase. The calculated flow fields are characterized by several large-scale vortices. The local volume fractions of gas and liquid are locally inhomogeneous and highly time-dependent. The time-averaged flow field is axisymmetric and stationary. The calculated volume fractions, velocities, and bubble-size distributions agree well with existing and previously published experimental results for bubble columns up to 0.3 m in diameter.

444 citations

Journal ArticleDOI
TL;DR: This work develops a model for integrated and dynamic performance measurement systems and provides a critical review of existing frameworks, models and techniques against the model to identify that current knowledge and techniques are sufficiently mature to create dynamicperformance measurement systems.
Abstract: Begins by creating a vision for dynamic performance measurement systems and goes on to describe the background to the work. Develops a model for integrated and dynamic performance measurement systems. Provides a critical review of existing frameworks, models and techniques against the model. Identifies that current knowledge and techniques are sufficiently mature to create dynamic performance measurement systems. The use of the dynamic performance measurement system is illustrated through a case study. Concludes with a series of lessons highlighting further research and development needs.

443 citations

Journal ArticleDOI
TL;DR: In this article, the authors present an updated summary of the roadmap of quantum technologies (QT) and present an overview of the current state-of-the-art quantum technologies.
Abstract: Within the last two decades, quantum technologies (QT) have made tremendous progress, moving from Nobel Prize award-winning experiments on quantum physics (1997: Chu, Cohen-Tanoudji, Phillips; 2001: Cornell, Ketterle, Wieman; 2005: Hall, Hansch-, Glauber; 2012: Haroche, Wineland) into a cross-disciplinary field of applied research. Technologies are being developed now that explicitly address individual quantum states and make use of the 'strange' quantum properties, such as superposition and entanglement. The field comprises four domains: quantum communication, where individual or entangled photons are used to transmit data in a provably secure way; quantum simulation, where well-controlled quantum systems are used to reproduce the behaviour of other, less accessible quantum systems; quantum computation, which employs quantum effects to dramatically speed up certain calculations, such as number factoring; and quantum sensing and metrology, where the high sensitivity of coherent quantum systems to external perturbations is exploited to enhance the performance of measurements of physical quantities. In Europe, the QT community has profited from several EC funded coordination projects, which, among other things, have coordinated the creation of a 150-page QT Roadmap (http://qurope.eu/h2020/qtflagship/roadmap2016). This article presents an updated summary of this roadmap.

443 citations

Journal ArticleDOI
TL;DR: In this article, a novel zeolitic imidazolate framework (ZIF-7) membrane was tested for its gas separation performance and showed promising H2 separation abilities.

443 citations

Journal ArticleDOI
TL;DR: The advanced interferometer network will herald a new era in observational astronomy, and there is a very strong science case to go beyond the advanced detector network and build detectors that operate in a frequency range from 1 Hz to 10 kHz, with sensitivity a factor 10 better in amplitude as discussed by the authors.
Abstract: The advanced interferometer network will herald a new era in observational astronomy. There is a very strong science case to go beyond the advanced detector network and build detectors that operate in a frequency range from 1 Hz to 10 kHz, with sensitivity a factor 10 better in amplitude. Such detectors will be able to probe a range of topics in nuclear physics, astronomy, cosmology and fundamental physics, providing insights into many unsolved problems in these areas.

441 citations


Authors

Showing all 14621 results

NameH-indexPapersCitations
Hyun-Chul Kim1764076183227
Peter Zoller13473476093
J. R. Smith1341335107641
Chao Zhang127311984711
Benjamin William Allen12480787750
J. F. J. van den Brand12377793070
J. H. Hough11790489697
Hans-Peter Seidel112121351080
Karsten Danzmann11275480032
Bruce D. Hammock111140957401
Benno Willke10950874673
Roman Schnabel10858971938
Jan Harms10844776132
Hartmut Grote10843472781
Ik Siong Heng10742371830
Network Information
Related Institutions (5)
Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

95% related

Technische Universität München
123.4K papers, 4M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

RWTH Aachen University
96.2K papers, 2.5M citations

93% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023221
2022520
20212,280
20202,210
20192,105
20181,959