scispace - formally typeset
Search or ask a question
Institution

Leibniz University of Hanover

EducationHanover, Niedersachsen, Germany
About: Leibniz University of Hanover is a education organization based out in Hanover, Niedersachsen, Germany. It is known for research contribution in the topics: Finite element method & Population. The organization has 14283 authors who have published 29845 publications receiving 682152 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A noise-robust architecture for a feedforward quantum neural network, with qudits as neurons and arbitrary unitary operations as perceptrons, whose training procedure is efficient in the number of layers.
Abstract: Neural networks enjoy widespread success in both research and industry and, with the advent of quantum technology, it is a crucial challenge to design quantum neural networks for fully quantum learning tasks. Here we propose a truly quantum analogue of classical neurons, which form quantum feedforward neural networks capable of universal quantum computation. We describe the efficient training of these networks using the fidelity as a cost function, providing both classical and efficient quantum implementations. Our method allows for fast optimisation with reduced memory requirements: the number of qudits required scales with only the width, allowing deep-network optimisation. We benchmark our proposal for the quantum task of learning an unknown unitary and find remarkable generalisation behaviour and a striking robustness to noisy training data.

274 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an overview of recent developments in simulating machining and grinding processes along the NC tool path in virtual environments, and present the present and future challenges to achieving a more accurate and efficient virtual machining process simulation and optimization system.

274 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the current issues of numerical modeling of crystalline silicon solar cells and recommended that the widely used software in the PV community, PC1D, should be extended to Fermi-Dirac statistics.
Abstract: Current issues of numerical modeling of crystalline silicon solar cells are reviewed. Numerical modeling has been applied to Si solar cells since the early days of computer modeling and has recently become widely used in the photovoltaics (PV) industry. Simulations are used to analyze fabricated cells and to predict effects due to device changes. Hence, they may accelerate cell optimization and provide quantitative data e.g. of potentially possible improvements, which may form a base for the decision making on development strategies. However, to achieve sufficiently high prediction capabilities, several models had to be refined specifically to PV demands, such as the intrinsic carrier density, minority carrier mobility, recombination at passivated surfaces, and optical models. Currently, the most unresolved issue is the modeling of the emitter layer on textured surfaces, the hole minority carrier mobility, Auger recombination at low dopant densities and intermediate injection levels, and fine-tuned band parameters as a function of temperature. Also, it is recommended that the widely used software in the PV community, PC1D should be extended to Fermi-Dirac statistics.

274 citations

Journal ArticleDOI
18 Jun 2010-Science
TL;DR: The preparation and observation of a Bose-Einstein condensate during free fall in a 146-meter-tall evacuated drop tower is reported and represents a promising source for matter-wave interferometry to test the universality of free fall with quantum matter.
Abstract: Albert Einstein's insight that it is impossible to distinguish a local experiment in a "freely falling elevator" from one in free space led to the development of the theory of general relativity. The wave nature of matter manifests itself in a striking way in Bose-Einstein condensates, where millions of atoms lose their identity and can be described by a single macroscopic wave function. We combine these two topics and report the preparation and observation of a Bose-Einstein condensate during free fall in a 146-meter-tall evacuated drop tower. During the expansion over 1 second, the atoms form a giant coherent matter wave that is delocalized on a millimeter scale, which represents a promising source for matter-wave interferometry to test the universality of free fall with quantum matter.

273 citations

Journal ArticleDOI
TL;DR: Performance bounds for generalized hybrid coding of video sequences with motion-compensating prediction are derived based on rate-distortion theory and required accuracies of the displacement estimate for a gain of motion-Compensating interframe coding over intraframe coding are given.
Abstract: Performance bounds for generalized hybrid coding of video sequences with motion-compensating prediction are derived based on rate-distortion theory. It is shown that the spatial power spectrum of the motion-compensated prediction error can be calculated from the signal power spectrum and the displacement estimation error p.d.f.. A spatial Wiener filter can improve the efficiency of motion-compensating prediction. Memoryless encoding of the motion-compensated prediction error and intraframe encoding of the motion-compensated prediction error are compared. An evaluation of the rate-distortion functions for a typical videoconference sampling format shows that for integer pel accuracy of the displacement estimate the additional gain by motion-compensating prediction over pure intraframe coding is limited to ∼ 0.8 bits/sample in moving areas. Required accuracies of the displacement estimate for a gain of motion-compensating interframe coding over intraframe coding are given.

273 citations


Authors

Showing all 14621 results

NameH-indexPapersCitations
Hyun-Chul Kim1764076183227
Peter Zoller13473476093
J. R. Smith1341335107641
Chao Zhang127311984711
Benjamin William Allen12480787750
J. F. J. van den Brand12377793070
J. H. Hough11790489697
Hans-Peter Seidel112121351080
Karsten Danzmann11275480032
Bruce D. Hammock111140957401
Benno Willke10950874673
Roman Schnabel10858971938
Jan Harms10844776132
Hartmut Grote10843472781
Ik Siong Heng10742371830
Network Information
Related Institutions (5)
Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

95% related

Technische Universität München
123.4K papers, 4M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

RWTH Aachen University
96.2K papers, 2.5M citations

93% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023221
2022520
20212,280
20202,210
20192,105
20181,959