scispace - formally typeset
Search or ask a question
Institution

Leibniz University of Hanover

EducationHanover, Niedersachsen, Germany
About: Leibniz University of Hanover is a education organization based out in Hanover, Niedersachsen, Germany. It is known for research contribution in the topics: Finite element method & Computer science. The organization has 14283 authors who have published 29845 publications receiving 682152 citations.


Papers
More filters
Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Matthew Abernathy3  +978 moreInstitutions (112)
TL;DR: In this paper, the authors reported that the non-detection of gravitational waves from the merger of binary-neutron star systems and neutron star-black hole systems during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO).
Abstract: We report here the non-detection of gravitational waves from the merger of binary–neutron star systems and neutron star–black hole systems during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO). In particular, we searched for gravitational-wave signals from binary–neutron star systems with component masses $\in [1,3]\,{M}_{\odot }$ and component dimensionless spins <0.05. We also searched for neutron star–black hole systems with the same neutron star parameters, black hole mass $\in [2,99]\,{M}_{\odot }$, and no restriction on the black hole spin magnitude. We assess the sensitivity of the two LIGO detectors to these systems and find that they could have detected the merger of binary–neutron star systems with component mass distributions of 1.35 ± 0.13 M ⊙ at a volume-weighted average distance of ~70 Mpc, and for neutron star–black hole systems with neutron star masses of 1.4 M ⊙ and black hole masses of at least 5 M ⊙, a volume-weighted average distance of at least ~110 Mpc. From this we constrain with 90% confidence the merger rate to be less than 12,600 Gpc−3 yr−1 for binary–neutron star systems and less than 3600 Gpc−3 yr−1 for neutron star–black hole systems. We discuss the astrophysical implications of these results, which we find to be in conflict with only the most optimistic predictions. However, we find that if no detection of neutron star–binary mergers is made in the next two Advanced LIGO and Advanced Virgo observing runs we would place significant constraints on the merger rates. Finally, assuming a rate of ${10}_{-7}^{+20}$ Gpc−3 yr−1, short gamma-ray bursts beamed toward the Earth, and assuming that all short gamma-ray bursts have binary–neutron star (neutron star–black hole) progenitors, we can use our 90% confidence rate upper limits to constrain the beaming angle of the gamma-ray burst to be greater than $2\buildrel{\circ}\over{.} {3}_{-1.1}^{+1.7}$ ($4\buildrel{\circ}\over{.} {3}_{-1.9}^{+3.1}$).

222 citations

Journal ArticleDOI
01 Oct 2007-Elements
TL;DR: In this paper, the Critical Zone can be considered as a feed-through reactor and the internal structure of this reactor is controlled by physical processes that create surface area, determine flow paths, and set the residence time of material in the critical zone.
Abstract: Geochemists have long recognized a correlation between rates of physical denudation and chemical weathering. What underlies this correlation? The Critical Zone can be considered as a feed-through reactor. Downward advance of the weathering front brings unweathered rock into the reactor. Fluids are supplied through precipitation. The reactor is stirred at the top by biological and physical processes. The balance between advance of the weathering front by mechanical and chemical processes and mass loss by denudation fixes the thickness of the Critical Zone reactor. The internal structure of this reactor is controlled by physical processes that create surface area, determine flow paths, and set the residence time of material in the Critical Zone. All of these impact chemical weathering flux.

221 citations

Journal ArticleDOI
TL;DR: Measurements of DWT can detect BOO better than free uroflowmetry, postvoid residual urine, or prostate volume, and in clinical routine, DWT measurements can be used to judge BOO noninvasively.

220 citations

Journal ArticleDOI
TL;DR: The stabilized ZIF-8 retains its structural characteristics with improved application performances in adsorption and membrane separation, and is endowed with high water-resistance after a shell-ligand-exchange-reaction.

220 citations

Journal ArticleDOI
TL;DR: In this paper, a new Jd-in-clinopyroxene-liquid barometer was calibrated from experimental data in the 1 atm to 20 kbar range.
Abstract: Pressure is one of the key variables that controls magmatic phase equilibria. However, estimating magma storage pressures from erupted products can be challenging. Various barometers have been developed over the past two decades that exploit the pressure-sensitive incorporation of jadeite (Jd) into clinopyroxene. These Jd-in-clinopyroxene barometers have been applied to rift zone magmas from Iceland, where published estimates of magma storage depths span the full thickness of the crust, and extend into the mantle. However, tests performed on commonly used clinopyroxene-liquid barometers with data from experiments on H 2 O-poor tholeiites in the 1 atm to 10 kbar range reveal substantial pressure-dependent inaccuracies, with some models overestimating pressures of experimental products equilibrated at 1 atm by up to 3 kbar. The pressures of closed-capsule experiments in the 1–5 kbar range are also overestimated, and such errors cannot be attributed to Na loss, as is the case in open furnace experiments. The following barometer was calibrated from experimental data in the 1 atm to 20 kbar range to improve the accuracy of Jd-in-clinopyroxene barometry at pressures relevant to magma storage in the crust: P ( kbar ) = − 26 . 27 + 39 . 16 T ( K ) 10 4 ln [ X Jd Cpx X NaO 0 . 5 liq X AlO 1 . 5 liq ( X SiO 2 liq ) 2 ] − 4 . 22 ln ( X DiHd Cpx ) + 78 . 43 X AlO 1 . 5 liq + 393 . 81 ( X NaO 0 . 5 liq X KO 0 . 5 liq ) 2 This new barometer accurately reproduces its calibration data with a standard error of estimate (SEE) of ±1.4 kbar, and is suitable for use on hydrous and anhydrous samples that are ultramafic to intermediate in composition, but should be used with caution below 1100 °C and at oxygen fugacities greater than one log unit above the QFM buffer. Tests performed using with data from experiments on H 2 O-poor tholeiites reveal that 1 atm runs were overestimated by less than the model precision (1.2 kbar); the new calibration is significantly more accurate than previous formulations. Many current estimates of magma storage pressures may therefore need to be reassessed. To this end, the new barometer was applied to numerous published clinopyroxene analyses from Icelandic rift zone tholeiites that were filtered to exclude compositions affected by poor analytical precision or collected from disequilibrium sector zones. Pressures and temperatures were then calculated using the new barometer in concert with Equation 33 from Putirka (2008). Putative equilibrium liquids were selected from a large database of Icelandic glass and whole-rock compositions using an iterative scheme because most clinopyroxene analyses were too primitive to be in equilibrium with their host glasses. High-Mg# clinopyroxenes from the highly primitive Borgarhraun eruption in north Iceland record a mean storage pressure in the lower crust (5.7 kbar). All other eruptions considered record mean pressures in the mid-crust, with primitive clinopyroxene populations recording slightly higher pressures (3.1–3.6 kbar) than evolved populations (2.6–2.8 kbar). Thus, while some magma processing takes place in the shallow crust immediately beneath Iceland’s central volcanoes, magma evolution under the island’s neovolcanic rift zones is dominated by mid-crustal processes.

219 citations


Authors

Showing all 14621 results

NameH-indexPapersCitations
Hyun-Chul Kim1764076183227
Peter Zoller13473476093
J. R. Smith1341335107641
Chao Zhang127311984711
Benjamin William Allen12480787750
J. F. J. van den Brand12377793070
J. H. Hough11790489697
Hans-Peter Seidel112121351080
Karsten Danzmann11275480032
Bruce D. Hammock111140957401
Benno Willke10950874673
Roman Schnabel10858971938
Jan Harms10844776132
Hartmut Grote10843472781
Ik Siong Heng10742371830
Network Information
Related Institutions (5)
Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

95% related

Technische Universität München
123.4K papers, 4M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

RWTH Aachen University
96.2K papers, 2.5M citations

93% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023221
2022520
20212,280
20202,210
20192,105
20181,959