scispace - formally typeset
Search or ask a question

Showing papers by "Linköping University published in 2016"


Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations


Journal ArticleDOI
TL;DR: It is found that the most common software packages for fMRI analysis (SPM, FSL, AFNI) can result in false-positive rates of up to 70%.
Abstract: The most widely used task functional magnetic resonance imaging (fMRI) analyses use parametric statistical methods that depend on a variety of assumptions. In this work, we use real resting-state data and a total of 3 million random task group analyses to compute empirical familywise error rates for the fMRI software packages SPM, FSL, and AFNI, as well as a nonparametric permutation method. For a nominal familywise error rate of 5%, the parametric statistical methods are shown to be conservative for voxelwise inference and invalid for clusterwise inference. Our results suggest that the principal cause of the invalid cluster inferences is spatial autocorrelation functions that do not follow the assumed Gaussian shape. By comparison, the nonparametric permutation test is found to produce nominal results for voxelwise as well as clusterwise inference. These findings speak to the need of validating the statistical methods being used in the field of neuroimaging.

2,946 citations


Journal ArticleDOI
TL;DR: Among patients with platinum-sensitive, recurrent ovarian cancer, the median duration of progression-free survival was significantly longer amongThose receiving niraparib than among those receiving placebo, regardless of the presence or absence of gBRCA mutations or HRD status, with moderate bone marrow toxicity.
Abstract: Tesaro; Amgen; Genentech; Roche; AstraZeneca; Myriad Genetics; Merck; Gradalis; Cerulean; Vermillion; ImmunoGen; Pfizer; Bayer; Nu-Cana BioMed; INSYS Therapeutics; GlaxoSmithKline; Verastem; Mateon Therapeutics; Pharmaceutical Product Development; Clovis Oncology; Janssen/Johnson Johnson; Eli Lilly; Merck Sharp Dohme

1,686 citations


Journal ArticleDOI
TL;DR: A nonfullerene-based polymer solar cell (PSC) that significantly outperforms fullerene -based PSCs with respect to the power-conversion efficiency and excellent thermal stability is demonstrated for the first time.
Abstract: A nonfullerene-based polymer solar cell (PSC) that significantly outperforms fullerene-based PSCs with respect to the power-conversion efficiency is demonstrated for the first time. An efficiency of >11%, which is among the top values in the PSC field, and excellent thermal stability is obtained using PBDB-T and ITIC as donor and acceptor, respectively.

1,662 citations


Proceedings ArticleDOI
TL;DR: The proposed SRDCF formulation allows the correlation filters to be learned on a significantly larger set of negative training samples, without corrupting the positive samples, and an optimization strategy is proposed, based on the iterative Gauss-Seidel method, for efficient online learning.
Abstract: Robust and accurate visual tracking is one of the most challenging computer vision problems. Due to the inherent lack of training data, a robust approach for constructing a target appearance model is crucial. Recently, discriminatively learned correlation filters (DCF) have been successfully applied to address this problem for tracking. These methods utilize a periodic assumption of the training samples to efficiently learn a classifier on all patches in the target neighborhood. However, the periodic assumption also introduces unwanted boundary effects, which severely degrade the quality of the tracking model. We propose Spatially Regularized Discriminative Correlation Filters (SRDCF) for tracking. A spatial regularization component is introduced in the learning to penalize correlation filter coefficients depending on their spatial location. Our SRDCF formulation allows the correlation filters to be learned on a significantly larger set of negative training samples, without corrupting the positive samples. We further propose an optimization strategy, based on the iterative Gauss-Seidel method, for efficient online learning of our SRDCF. Experiments are performed on four benchmark datasets: OTB-2013, ALOV++, OTB-2015, and VOT2014. Our approach achieves state-of-the-art results on all four datasets. On OTB-2013 and OTB-2015, we obtain an absolute gain of 8.0% and 8.2% respectively, in mean overlap precision, compared to the best existing trackers.

1,616 citations


Journal ArticleDOI
TL;DR: Perovskite quantum wells yield highly efficient LEDs spanning the visible and near-infrared as discussed by the authors. But their performance is not as good as those of traditional LEDs, and their lifetime is shorter.
Abstract: Perovskite quantum wells yield highly efficient LEDs spanning the visible and near-infrared.

1,419 citations


Book ChapterDOI
TL;DR: Discriminative Correlation Filters have demonstrated excellent performance for visual object tracking and the key to their success is the ability to efficiently exploit available negative data.
Abstract: Discriminative Correlation Filters (DCF) have demonstrated excellent performance for visual object tracking. The key to their success is the ability to efficiently exploit available negative data by including all shifted versions of a training sample. However, the underlying DCF formulation is restricted to single-resolution feature maps, significantly limiting its potential. In this paper, we go beyond the conventional DCF framework and introduce a novel formulation for training continuous convolution filters. We employ an implicit interpolation model to pose the learning problem in the continuous spatial domain. Our proposed formulation enables efficient integration of multi-resolution deep feature maps, leading to superior results on three object tracking benchmarks: OTB-2015 (+5.1% in mean OP), Temple-Color (+4.6% in mean OP), and VOT2015 (20% relative reduction in failure rate). Additionally, our approach is capable of sub-pixel localization, crucial for the task of accurate feature point tracking. We also demonstrate the effectiveness of our learning formulation in extensive feature point tracking experiments. Code and supplementary material are available at this http URL.

1,324 citations


Book ChapterDOI
08 Oct 2016
TL;DR: In this article, discriminative correlation filters (DCF) have demonstrated excellent performance for visual object tracking, and the key to their success is the ability to efficiently exploit available negative data.
Abstract: Discriminative Correlation Filters (DCF) have demonstrated excellent performance for visual object tracking. The key to their success is the ability to efficiently exploit available negative data b ...

1,301 citations



Book
17 Nov 2016
TL;DR: This is the first complete guide to the physical and engineering principles of Massive MIMO and will guide readers through key topics in multi-cell systems such as propagation modeling, multiplexing and de-multiplexing, channel estimation, power control, and performance evaluation.
Abstract: "Written by the pioneers of the concept, this is the first complete guide to the physical and engineering principles of Massive MIMO. Assuming only a basic background in communications and statisti ...

1,115 citations


Journal ArticleDOI
TL;DR: In this article, fast and efficient charge separation is essential to achieve high power conversion efficiency in organic solar cells (OSCs), and in state-of-the-art OSCs, this is usually achieved by a significant driv
Abstract: Fast and efficient charge separation is essential to achieve high power conversion efficiency in organic solar cells (OSCs). In state-of-the-art OSCs, this is usually achieved by a significant driv ...

Posted Content
TL;DR: In this paper, a factorized convolution operator was introduced to reduce the number of parameters in the discriminative correlation filter (DCF) model and a compact generative model of the training sample distribution, which significantly reduced memory and time complexity, while providing better diversity of samples.
Abstract: In recent years, Discriminative Correlation Filter (DCF) based methods have significantly advanced the state-of-the-art in tracking. However, in the pursuit of ever increasing tracking performance, their characteristic speed and real-time capability have gradually faded. Further, the increasingly complex models, with massive number of trainable parameters, have introduced the risk of severe over-fitting. In this work, we tackle the key causes behind the problems of computational complexity and over-fitting, with the aim of simultaneously improving both speed and performance. We revisit the core DCF formulation and introduce: (i) a factorized convolution operator, which drastically reduces the number of parameters in the model; (ii) a compact generative model of the training sample distribution, that significantly reduces memory and time complexity, while providing better diversity of samples; (iii) a conservative model update strategy with improved robustness and reduced complexity. We perform comprehensive experiments on four benchmarks: VOT2016, UAV123, OTB-2015, and TempleColor. When using expensive deep features, our tracker provides a 20-fold speedup and achieves a 13.0% relative gain in Expected Average Overlap compared to the top ranked method in the VOT2016 challenge. Moreover, our fast variant, using hand-crafted features, operates at 60 Hz on a single CPU, while obtaining 65.0% AUC on OTB-2015.

Journal ArticleDOI
TL;DR: This overview article identifies 10 myths of Massive MIMO and explains why they are not true, and asks a question that is critical for the practical adoption of the technology and which will require intense future research activities to answer properly.
Abstract: Wireless communications is one of the most successful technologies in modern years, given that an exponential growth rate in wireless traffic has been sustained for over a century (known as Cooper’s law). This trend will certainly continue, driven by new innovative applications; for example, augmented reality and the Internet of Things. Massive MIMO has been identified as a key technology to handle orders of magnitude more data traffic. Despite the attention it is receiving from the communication community, we have personally witnessed that Massive MIMO is subject to several widespread misunderstandings, as epitomized by following (fictional) abstract: “The Massive MIMO technology uses a nearly infinite number of high-quality antennas at the base stations. By having at least an order of magnitude more antennas than active terminals, one can exploit asymptotic behaviors that some special kinds of wireless channels have. This technology looks great at first sight, but unfortunately the signal processing complexity is off the charts and the antenna arrays would be so huge that it can only be implemented in millimeter-wave bands.” These statements are, in fact, completely false. In this overview article, we identify 10 myths and explain why they are not true. We also ask a question that is critical for the practical adoption of the technology and which will require intense future research activities to answer properly. We provide references to key technical papers that support our claims, while a further list of related overview and technical papers can be found at the Massive MIMO Info Point: http://massivemimo. eu

Journal ArticleDOI
TL;DR: The 2009 European League Against Rheumatism recommendations for the management of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) have been updated and 15 recommendations were developed, covering general aspects, such as attaining remission.
Abstract: In this article, the 2009 European League Against Rheumatism (EULAR) recommendations for the management of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) have been updated. The 2009 recommendations were on the management of primary small and medium vessel vasculitis. The 2015 update has been developed by an international task force representing EULAR, the European Renal Association and the European Vasculitis Society (EUVAS). The recommendations are based upon evidence from systematic literature reviews, as well as expert opinion where appropriate. The evidence presented was discussed and summarised by the experts in the course of a consensus-finding and voting process. Levels of evidence and grades of recommendations were derived and levels of agreement (strengths of recommendations) determined. In addition to the voting by the task force members, the relevance of the recommendations was assessed by an online voting survey among members of EUVAS. Fifteen recommendations were developed, covering general aspects, such as attaining remission and the need for shared decision making between clinicians and patients. More specific items relate to starting immunosuppressive therapy in combination with glucocorticoids to induce remission, followed by a period of remission maintenance; for remission induction in life-threatening or organ-threatening AAV, cyclophosphamide and rituximab are considered to have similar efficacy; plasma exchange which is recommended, where licensed, in the setting of rapidly progressive renal failure or severe diffuse pulmonary haemorrhage. These recommendations are intended for use by healthcare professionals, doctors in specialist training, medical students, pharmaceutical industries and drug regulatory organisations.

Posted Content
TL;DR: Under uncorrelated shadow fading conditions, the cell-free scheme provides nearly fivefold improvement in 95%-likely per-user throughput over the small-cell scheme, and tenfold improvement when shadow fading is correlated.
Abstract: A Cell-Free Massive MIMO (multiple-input multiple-output) system comprises a very large number of distributed access points (APs)which simultaneously serve a much smaller number of users over the same time/frequency resources based on directly measured channel characteristics. The APs and users have only one antenna each. The APs acquire channel state information through time-division duplex operation and the reception of uplink pilot signals transmitted by the users. The APs perform multiplexing/de-multiplexing through conjugate beamforming on the downlink and matched filtering on the uplink. Closed-form expressions for individual user uplink and downlink throughputs lead to max-min power control algorithms. Max-min power control ensures uniformly good service throughout the area of coverage. A pilot assignment algorithm helps to mitigate the effects of pilot contamination, but power control is far more important in that regard. Cell-Free Massive MIMO has considerably improved performance with respect to a conventional small-cell scheme, whereby each user is served by a dedicated AP, in terms of both 95%-likely per-user throughput and immunity to shadow fading spatial correlation. Under uncorrelated shadow fading conditions, the cell-free scheme provides nearly 5-fold improvement in 95%-likely per-user throughput over the small-cell scheme, and 10-fold improvement when shadow fading is correlated.

Journal ArticleDOI
TL;DR: In this article, large scale synthesis and delamination of 2D Mo2CTx (where T is a surface termination group) has been achieved by selectively etching gallium from the recently discovered nanolaminated, ternary tra...
Abstract: Large scale synthesis and delamination of 2D Mo2CTx (where T is a surface termination group) has been achieved by selectively etching gallium from the recently discovered nanolaminated, ternary tra ...

Posted Content
TL;DR: This paper proposes a novel scale adaptive tracking approach by learning separate discriminative correlation filters for translation and scale estimation in a tracking-by-detection framework that obtains the top rank in performance by outperforming 19 state-of-the-art trackers on OTB and 37 state of theart tracker on VOT2014.
Abstract: Accurate scale estimation of a target is a challenging research problem in visual object tracking. Most state-of-the-art methods employ an exhaustive scale search to estimate the target size. The exhaustive search strategy is computationally expensive and struggles when encountered with large scale variations. This paper investigates the problem of accurate and robust scale estimation in a tracking-by-detection framework. We propose a novel scale adaptive tracking approach by learning separate discriminative correlation filters for translation and scale estimation. The explicit scale filter is learned online using the target appearance sampled at a set of different scales. Contrary to standard approaches, our method directly learns the appearance change induced by variations in the target scale. Additionally, we investigate strategies to reduce the computational cost of our approach. Extensive experiments are performed on the OTB and the VOT2014 datasets. Compared to the standard exhaustive scale search, our approach achieves a gain of 2.5% in average overlap precision on the OTB dataset. Additionally, our method is computationally efficient, operating at a 50% higher frame rate compared to the exhaustive scale search. Our method obtains the top rank in performance by outperforming 19 state-of-the-art trackers on OTB and 37 state-of-the-art trackers on VOT2014.

Journal ArticleDOI
Marielle Saunois1, Philippe Bousquet1, Ben Poulter2, Anna Peregon1, Philippe Ciais1, Josep G. Canadell3, Edward J. Dlugokencky4, Giuseppe Etiope5, David Bastviken6, Sander Houweling7, Greet Janssens-Maenhout, Francesco N. Tubiello8, Simona Castaldi, Robert B. Jackson9, Mihai Alexe, Vivek K. Arora, David J. Beerling10, Peter Bergamaschi, Donald R. Blake11, Gordon Brailsford12, Victor Brovkin13, Lori Bruhwiler4, Cyril Crevoisier14, Patrick M. Crill, Kristofer R. Covey15, Charles L. Curry16, Christian Frankenberg17, Nicola Gedney18, Lena Höglund-Isaksson19, Misa Ishizawa20, Akihiko Ito20, Fortunat Joos21, Heon Sook Kim20, Thomas Kleinen13, Paul B. Krummel3, Jean-Francois Lamarque22, Ray L. Langenfelds3, Robin Locatelli1, Toshinobu Machida20, Shamil Maksyutov20, Kyle C. McDonald23, Julia Marshall13, Joe R. Melton, Isamu Morino18, Vaishali Naik24, Simon O'Doherty25, Frans-Jan W. Parmentier26, Prabir K. Patra27, Changhui Peng28, Shushi Peng1, Glen P. Peters29, Isabelle Pison1, Catherine Prigent30, Ronald G. Prinn31, Michel Ramonet1, William J. Riley32, Makoto Saito20, Monia Santini, Ronny Schroeder33, Ronny Schroeder23, Isobel J. Simpson11, Renato Spahni21, P. Steele3, Atsushi Takizawa34, Brett F. Thornton, Hanqin Tian35, Yasunori Tohjima20, Nicolas Viovy1, Apostolos Voulgarakis36, Michiel van Weele37, Guido R. van der Werf38, Ray F. Weiss39, Christine Wiedinmyer22, David J. Wilton10, Andy Wiltshire18, Doug Worthy40, Debra Wunch41, Xiyan Xu32, Yukio Yoshida20, Bowen Zhang35, Zhen Zhang2, Qiuan Zhu42 
TL;DR: The Global Carbon Project (GCP) as discussed by the authors is a consortium of multi-disciplinary scientists, including atmospheric physicists and chemists, biogeochemists of surface and marine emissions, and socio-economists who study anthropogenic emissions.
Abstract: . The global methane (CH4) budget is becoming an increasingly important component for managing realistic pathways to mitigate climate change. This relevance, due to a shorter atmospheric lifetime and a stronger warming potential than carbon dioxide, is challenged by the still unexplained changes of atmospheric CH4 over the past decade. Emissions and concentrations of CH4 are continuing to increase, making CH4 the second most important human-induced greenhouse gas after carbon dioxide. Two major difficulties in reducing uncertainties come from the large variety of diffusive CH4 sources that overlap geographically, and from the destruction of CH4 by the very short-lived hydroxyl radical (OH). To address these difficulties, we have established a consortium of multi-disciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate research on the methane cycle, and producing regular (∼ biennial) updates of the global methane budget. This consortium includes atmospheric physicists and chemists, biogeochemists of surface and marine emissions, and socio-economists who study anthropogenic emissions. Following Kirschke et al. (2013), we propose here the first version of a living review paper that integrates results of top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models, inventories and data-driven approaches (including process-based models for estimating land surface emissions and atmospheric chemistry, and inventories for anthropogenic emissions, data-driven extrapolations). For the 2003–2012 decade, global methane emissions are estimated by top-down inversions at 558 Tg CH4 yr−1, range 540–568. About 60 % of global emissions are anthropogenic (range 50–65 %). Since 2010, the bottom-up global emission inventories have been closer to methane emissions in the most carbon-intensive Representative Concentrations Pathway (RCP8.5) and higher than all other RCP scenarios. Bottom-up approaches suggest larger global emissions (736 Tg CH4 yr−1, range 596–884) mostly because of larger natural emissions from individual sources such as inland waters, natural wetlands and geological sources. Considering the atmospheric constraints on the top-down budget, it is likely that some of the individual emissions reported by the bottom-up approaches are overestimated, leading to too large global emissions. Latitudinal data from top-down emissions indicate a predominance of tropical emissions (∼ 64 % of the global budget, The most important source of uncertainty on the methane budget is attributable to emissions from wetland and other inland waters. We show that the wetland extent could contribute 30–40 % on the estimated range for wetland emissions. Other priorities for improving the methane budget include the following: (i) the development of process-based models for inland-water emissions, (ii) the intensification of methane observations at local scale (flux measurements) to constrain bottom-up land surface models, and at regional scale (surface networks and satellites) to constrain top-down inversions, (iii) improvements in the estimation of atmospheric loss by OH, and (iv) improvements of the transport models integrated in top-down inversions. The data presented here can be downloaded from the Carbon Dioxide Information Analysis Center ( http://doi.org/10.3334/CDIAC/GLOBAL_METHANE_BUDGET_2016_V1.1 ) and the Global Carbon Project.

Journal ArticleDOI
TL;DR: An expert group to review the scientific evidence for the relationship of load and health outcomes in sport provides athletes, coaches and support staff with practical guidelines to manage load in sport.
Abstract: Athletes participating in elite sports are exposed to high training loads and increasingly saturated competition calendars. Emerging evidence indicates that poor load management is a major risk factor for injury. The International Olympic Committee convened an expert group to review the scientific evidence for the relationship of load (defined broadly to include rapid changes in training and competition load, competition calendar congestion, psychological load and travel) and health outcomes in sport. We summarise the results linking load to risk of injury in athletes, and provide athletes, coaches and support staff with practical guidelines to manage load in sport. This consensus statement includes guidelines for (1) prescription of training and competition load, as well as for (2) monitoring of training, competition and psychological load, athlete well-being and injury. In the process, we identified research priorities.

Book ChapterDOI
Matej Kristan1, Ales Leonardis2, Jiří Matas3, Michael Felsberg4, Roman Pflugfelder5, Luka Cehovin1, Tomas Vojir3, Gustav Häger4, Alan Lukežič1, Gustavo Fernandez5, Abhinav Gupta6, Alfredo Petrosino7, Alireza Memarmoghadam8, Alvaro Garcia-Martin9, Andres Solis Montero10, Andrea Vedaldi11, Andreas Robinson4, Andy J. Ma12, Anton Varfolomieiev13, A. Aydin Alatan14, Aykut Erdem15, Bernard Ghanem16, Bin Liu, Bohyung Han17, Brais Martinez18, Chang-Ming Chang19, Changsheng Xu20, Chong Sun21, Daijin Kim17, Dapeng Chen22, Dawei Du20, Deepak Mishra23, Dit-Yan Yeung24, Erhan Gundogdu25, Erkut Erdem15, Fahad Shahbaz Khan4, Fatih Porikli26, Fatih Porikli27, Fei Zhao20, Filiz Bunyak28, Francesco Battistone7, Gao Zhu27, Giorgio Roffo29, Gorthi R. K. Sai Subrahmanyam23, Guilherme Sousa Bastos30, Guna Seetharaman31, Henry Medeiros32, Hongdong Li27, Honggang Qi20, Horst Bischof33, Horst Possegger33, Huchuan Lu21, Hyemin Lee17, Hyeonseob Nam34, Hyung Jin Chang35, Isabela Drummond30, Jack Valmadre11, Jae-chan Jeong36, Jaeil Cho36, Jae-Yeong Lee36, Jianke Zhu37, Jiayi Feng20, Jin Gao20, Jin-Young Choi, Jingjing Xiao2, Ji-Wan Kim36, Jiyeoup Jeong, João F. Henriques11, Jochen Lang10, Jongwon Choi, José M. Martínez9, Junliang Xing20, Junyu Gao20, Kannappan Palaniappan28, Karel Lebeda38, Ke Gao28, Krystian Mikolajczyk35, Lei Qin20, Lijun Wang21, Longyin Wen19, Luca Bertinetto11, Madan Kumar Rapuru23, Mahdieh Poostchi28, Mario Edoardo Maresca7, Martin Danelljan4, Matthias Mueller16, Mengdan Zhang20, Michael Arens, Michel Valstar18, Ming Tang20, Mooyeol Baek17, Muhammad Haris Khan18, Naiyan Wang24, Nana Fan39, Noor M. Al-Shakarji28, Ondrej Miksik11, Osman Akin15, Payman Moallem8, Pedro Senna30, Philip H. S. Torr11, Pong C. Yuen12, Qingming Huang20, Qingming Huang39, Rafael Martin-Nieto9, Rengarajan Pelapur28, Richard Bowden38, Robert Laganiere10, Rustam Stolkin2, Ryan Walsh32, Sebastian B. Krah, Shengkun Li19, Shengping Zhang39, Shizeng Yao28, Simon Hadfield38, Simone Melzi29, Siwei Lyu19, Siyi Li24, Stefan Becker, Stuart Golodetz11, Sumithra Kakanuru23, Sunglok Choi36, Tao Hu20, Thomas Mauthner33, Tianzhu Zhang20, Tony P. Pridmore18, Vincenzo Santopietro7, Weiming Hu20, Wenbo Li40, Wolfgang Hübner, Xiangyuan Lan12, Xiaomeng Wang18, Xin Li39, Yang Li37, Yiannis Demiris35, Yifan Wang21, Yuankai Qi39, Zejian Yuan22, Zexiong Cai12, Zhan Xu37, Zhenyu He39, Zhizhen Chi21 
08 Oct 2016
TL;DR: The Visual Object Tracking challenge VOT2016 goes beyond its predecessors by introducing a new semi-automatic ground truth bounding box annotation methodology and extending the evaluation system with the no-reset experiment.
Abstract: The Visual Object Tracking challenge VOT2016 aims at comparing short-term single-object visual trackers that do not apply pre-learned models of object appearance. Results of 70 trackers are presented, with a large number of trackers being published at major computer vision conferences and journals in the recent years. The number of tested state-of-the-art trackers makes the VOT 2016 the largest and most challenging benchmark on short-term tracking to date. For each participating tracker, a short description is provided in the Appendix. The VOT2016 goes beyond its predecessors by (i) introducing a new semi-automatic ground truth bounding box annotation methodology and (ii) extending the evaluation system with the no-reset experiment. The dataset, the evaluation kit as well as the results are publicly available at the challenge website (http://votchallenge.net).

Journal ArticleDOI
TL;DR: A new trimethylaluminum vapor-based crosslinking method to render the nanocrystal films insoluble is applied, coupled with the natural confinement of injected charges within the perovskite crystals, facilitates electron-hole capture and gives rise to a remarkable electroluminescence yield.
Abstract: The preparation of highly efficient perovskite nanocrystal light-emitting diodes is shown. A new trimethylaluminum vapor-based crosslinking method to render the nanocrystal films insoluble is applied. The resulting near-complete nanocrystal film coverage, coupled with the natural confinement of injected charges within the perovskite crystals, facilitates electron-hole capture and give rise to a remarkable electroluminescence yield of 5.7%.

Journal ArticleDOI
TL;DR: This work adapted Kahneman's seminal (1973) Capacity Model of Attention to listening and proposed a heuristically useful Framework for Understanding Effortful Listening (FUEL), which incorporates the well-known relationship between cognitive demand and the supply of cognitive capacity that is the foundation of cognitive theories of attention.
Abstract: The Fifth Eriksholm Workshop on “Hearing Impairment and Cognitive Energy” was convened to develop a consensus among interdisciplinary experts about what is known on the topic, gaps in knowledge, the use of terminology, priorities for future research, and implications for practice. The general term cognitive energy was chosen to facilitate the broadest possible discussion of the topic. It goes back to Titchener (1908) who described the effects of attention on perception; he used the term psychic energy for the notion that limited mental resources can be flexibly allocated among perceptual and mental activities. The workshop focused on three main areas: (1) theories, models, concepts, definitions, and frameworks; (2) methods and measures; and (3) knowledge translation. We defined effort as the deliberate allocation of mental resources to overcome obstacles in goal pursuit when carrying out a task, with listening effort applying more specifically when tasks involve listening. We adapted Kahneman’s seminal (1973) Capacity Model of Attention to listening and proposed a heuristically useful Framework for Understanding Effortful Listening (FUEL). Our FUEL incorporates the well-known relationship between cognitive demand and the supply of cognitive capacity that is the foundation of cognitive theories of attention. Our FUEL also incorporates a motivation dimension based on complementary theories of motivational intensity, adaptive gain control, and optimal performance, fatigue, and pleasure. Using a three-dimensional illustration, we highlight how listening effort depends not only on hearing difficulties and task demands but also on the listener’s motivation to expend mental effort in the challenging situations of everyday life.

Journal ArticleDOI
TL;DR: The European Society of Cardiology Heart Failure Long‐Term Registry (ESC‐HF‐LT‐R) was set up with the aim of describing the clinical epidemiology and the 1‐year outcomes of patients with heart failure with the added intention of comparing differences between countries.
Abstract: Aims The European Society of Cardiology Heart Failure Long-Term Registry (ESC-HF-LT-R) was set up with the aim of describing the clinical epidemiology and the 1-year outcomes of patients with heart failure (HF) with the added intention of comparing differences between participating countries. Methods and results The ESC-HF-LT-R is a prospective, observational registry contributed to by 211 cardiology centres in 21 European and/or Mediterranean countries, all being member countries of the ESC. Between May 2011 and April 2013 it collected data on 12 440 patients, 40.5% of them hospitalized with acute HF (AHF) and 59.5% outpatients with chronic HF (CHF). The all-cause 1-year mortality rate was 23.6% for AHF and 6.4% for CHF. The combined endpoint of mortality or HF hospitalization within 1 year had a rate of 36% for AHF and 14.5% for CHF. All-cause mortality rates in the different regions ranged from 21.6% to 36.5% in patients with AHF, and from 6.9% to 15.6% in those with CHF. These differences in mortality between regions are thought reflect differences in the characteristics and/or management of these patients. Conclusion The ESC-HF-LT-R shows that 1-year all-cause mortality of patients with AHF is still high while the mortality of CHF is lower. This registry provides the opportunity to evaluate the management and outcomes of patients with HF and identify areas for improvement.

Journal ArticleDOI
TL;DR: In this article, the optimal number of scheduled users in a massive MIMO system with arbitrary pilot reuse and random user locations is analyzed in a closed form, while simulations are used to show what happens at finite $M$, in different interference scenarios, with different pilot reuse factors, and for different processing schemes.
Abstract: Massive MIMO is a promising technique for increasing the spectral efficiency (SE) of cellular networks, by deploying antenna arrays with hundreds or thousands of active elements at the base stations and performing coherent transceiver processing. A common rule-of-thumb is that these systems should have an order of magnitude more antennas $M$ than scheduled users $K$ because the users’ channels are likely to be near-orthogonal when $M/K > 10$ . However, it has not been proved that this rule-of-thumb actually maximizes the SE. In this paper, we analyze how the optimal number of scheduled users $K^\star$ depends on $M$ and other system parameters. To this end, new SE expressions are derived to enable efficient system-level analysis with power control, arbitrary pilot reuse, and random user locations. The value of $K^\star$ in the large- $M$ regime is derived in closed form, while simulations are used to show what happens at finite $M$ , in different interference scenarios, with different pilot reuse factors, and for different processing schemes. Up to half the coherence block should be dedicated to pilots and the optimal $M/K$ is less than 10 in many cases of practical relevance. Interestingly, $K^\star$ depends strongly on the processing scheme and hence it is unfair to compare different schemes using the same $K$ .

Journal ArticleDOI
TL;DR: A unified model in which immune tolerance to β cells can be broken by several environmental exposures that induce generation of hybrid peptides acting as neoautoantigens is suggested.

Journal ArticleDOI
TL;DR: Training-related hamstring injury rates in male professional footballers over 13 consecutive seasons have increased substantially since 2001 but match-related injury rates have remained stable, and the challenge is for clubs to reduce training-related muscle injury rates without impairing match performance.
Abstract: Background There are limited data on hamstring injury rates over time in football. Aim To analyse time trends in hamstring injury rates in male professional footballers over 13 consecutive seasons and to distinguish the relative contribution of training and match injuries. Methods 36 clubs from 12 European countries were followed between 2001 and 2014. Team medical staff recorded individual player exposure and time-loss injuries. Injuries per 1000 h were compared as a rate ratio (RR) with 95% CI. Injury burden was the number of lay off days per 1000 h. Seasonal trend for injury was analysed using linear regression. Results A total of 1614 hamstring injuries were recorded; 22% of players sustained at least one hamstring injury during a season. The overall hamstring injury rate over the 13-year period was 1.20 injuries per 1000 h; the match injury rate (4.77) being 9 times higher than the training injury rate (0.51; RR 9.4; 95% CI 8.5 to 10.4). The time-trend analysis showed an annual average 2.3% year on year increase in the total hamstring injury rate over the 13-year period (R 2 =0.431, b=0.023, 95% CI 0.006 to 0.041, p=0.015). This increase over time was most pronounced for training injuries—these increased by 4.0% per year (R 2 =0.450, b=0.040, 95% CI 0.011 to 0.070, p=0.012). The average hamstring injury burden was 19.7 days per 1000 h (annual average increase 4.1%) (R 2 =0.437, b=0.041, 95% CI 0.010 to 0.072, p=0.014). Conclusions Training-related hamstring injury rates have increased substantially since 2001 but match-related injury rates have remained stable. The challenge is for clubs to reduce training-related hamstring injury rates without impairing match performance.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the effects of the presence of LiCl during the chemical etching of the MAX phase Ti3AlC2 into MXene Ti3C2Tx (T stands for surface termination) and found that the resulting MXene has Li+ cations in the interlayer space.
Abstract: Ti3C2 and other two-dimensional transition metal carbides known as MXenes are currently being explored for many applications involving intercalated ions, from electrochemical energy storage, to contaminant sorption from water, to selected ion sieving. We report here a systematic investigation of ion exchange in Ti3C2 MXene and its hydration/dehydration behavior. We have investigated the effects of the presence of LiCl during the chemical etching of the MAX phase Ti3AlC2 into MXene Ti3C2Tx (T stands for surface termination) and found that the resulting MXene has Li+ cations in the interlayer space. We successfully exchanged the Li+ cations with K+, Na+, Rb+, Mg2+, and Ca2+ (supported by X-ray photoelectron and energy-dispersive spectroscopy) and found that the exchanged material expands on the unit-cell level in response to changes in humidity, with the nature of expansion dependent on the intercalated cation, similar to behavior of clay minerals; stepwise expansions of the basal spacing were observed, wit...

Journal ArticleDOI
TL;DR: Clinical psychologists should consider using modern information technology and evidence-based treatment programs as a complement to their other services, even though there will always be clients for whom face-to-face treatment is the best option.
Abstract: During the past 15 years, much progress has been made in developing and testing Internet-delivered psychological treatments. In particular, therapist-guided Internet treatments have been found to be effective for a wide range of psychiatric and somatic conditions in well over 100 controlled trials. These treatments require (a) a secure web platform, (b) robust assessment procedures, (c) treatment contents that can be text based or offered in other formats, and (d) a therapist role that differs from that in face-to-face therapy. Studies suggest that guided Internet treatments can be as effective as face-to-face treatments, lead to sustained improvements, work in clinically representative conditions, and probably are cost-effective. Despite these research findings, Internet treatment is not yet disseminated in most places, and clinical psychologists should consider using modern information technology and evidence-based treatment programs as a complement to their other services, even though there will always be clients for whom face-to-face treatment is the best option.

Proceedings ArticleDOI
01 Jun 2016
TL;DR: In this article, the authors propose a unified formulation by minimizing a single loss over both the target appearance model and the sample quality weights, which enables corrupted samples to be downweighted while increasing the impact of correct ones.
Abstract: Tracking-by-detection methods have demonstrated competitive performance in recent years. In these approaches, the tracking model heavily relies on the quality of the training set. Due to the limited amount of labeled training data, additional samples need to be extracted and labeled by the tracker itself. This often leads to the inclusion of corrupted training samples, due to occlusions, misalignments and other perturbations. Existing tracking-by-detection methods either ignore this problem, or employ a separate component for managing the training set. We propose a novel generic approach for alleviating the problem of corrupted training samples in tracking-bydetection frameworks. Our approach dynamically manages the training set by estimating the quality of the samples. Contrary to existing approaches, we propose a unified formulation by minimizing a single loss over both the target appearance model and the sample quality weights. The joint formulation enables corrupted samples to be downweighted while increasing the impact of correct ones. Experiments are performed on three benchmarks: OTB-2015 with 100 videos, VOT-2015 with 60 videos, and Temple-Color with 128 videos. On the OTB-2015, our unified formulation significantly improves the baseline, with a gain of 3:8% in mean overlap precision. Finally, our method achieves state-of-the-art results on all three datasets.

Journal ArticleDOI
01 May 2016
TL;DR: In this paper, a chemical etching method was developed to produce porous two-dimensional (2D) Ti3C2Tx MXenes at room temperature in aqueous solutions.
Abstract: Herein we develop a chemical etching method to produce porous two-dimensional (2D) Ti3C2Tx MXenes at room temperature in aqueous solutions. The as-produced porous Ti3C2Tx (p-Ti3C2Tx) have larger sp ...