scispace - formally typeset
Search or ask a question
Institution

Linköping University

EducationLinköping, Sweden
About: Linköping University is a education organization based out in Linköping, Sweden. It is known for research contribution in the topics: Population & Thin film. The organization has 15671 authors who have published 50013 publications receiving 1542189 citations.


Papers
More filters
Proceedings ArticleDOI
23 Jun 2014
TL;DR: The contribution of color in a tracking-by-detection framework is investigated and an adaptive low-dimensional variant of color attributes is proposed, suggesting that color attributes provides superior performance for visual tracking.
Abstract: Visual tracking is a challenging problem in computer vision. Most state-of-the-art visual trackers either rely on luminance information or use simple color representations for image description. Contrary to visual tracking, for object recognition and detection, sophisticated color features when combined with luminance have shown to provide excellent performance. Due to the complexity of the tracking problem, the desired color feature should be computationally efficient, and possess a certain amount of photometric invariance while maintaining high discriminative power. This paper investigates the contribution of color in a tracking-by-detection framework. Our results suggest that color attributes provides superior performance for visual tracking. We further propose an adaptive low-dimensional variant of color attributes. Both quantitative and attribute-based evaluations are performed on 41 challenging benchmark color sequences. The proposed approach improves the baseline intensity-based tracker by 24 % in median distance precision. Furthermore, we show that our approach outperforms state-of-the-art tracking methods while running at more than 100 frames per second.

1,499 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the present understanding of film growth processes and their role in microstructural evolution as a function of deposition variables including temperature, the presence of reactive species, and the use of low-energy ion irradiation during growth.
Abstract: Atomic-scale control and manipulation of the microstructure of polycrystalline thin films during kinetically limited low-temperature deposition, crucial for a broad range of industrial applications, has been a leading goal of materials science during the past decades. Here, we review the present understanding of film growth processes—nucleation, coalescence, competitive grain growth, and recrystallization—and their role in microstructural evolution as a function of deposition variables including temperature, the presence of reactive species, and the use of low-energy ion irradiation during growth.

1,499 citations

Journal ArticleDOI
TL;DR: It is shown that conducting polymers might be capable of meeting the demands of electricity production from waste heat (co-generation) and natural heat sources and to generate electricity from large volumes of warm fluids, heat exchangers must be functionalized with TEGs.
Abstract: Thermoelectric generators (TEGs) transform a heat flow into electricity. Thermoelectric materials are being investigated for electricity production from waste heat (co-generation) and natural heat sources. For temperatures below 200 °C, the best commercially available inorganic semiconductors are bismuth telluride (Bi(2)Te(3))-based alloys, which possess a figure of merit ZT close to one. Most of the recently discovered thermoelectric materials with ZT>2 exhibit one common property, namely their low lattice thermal conductivities. Nevertheless, a high ZT value is not enough to create a viable technology platform for energy harvesting. To generate electricity from large volumes of warm fluids, heat exchangers must be functionalized with TEGs. This requires thermoelectric materials that are readily synthesized, air stable, environmentally friendly and solution processable to create patterns on large areas. Here we show that conducting polymers might be capable of meeting these demands. The accurate control of the oxidation level in poly(3,4-ethylenedioxythiophene) (PEDOT) combined with its low intrinsic thermal conductivity (λ=0.37 W m(-1) K(-1)) yields a ZT=0.25 at room temperature that approaches the values required for efficient devices.

1,470 citations

Journal ArticleDOI
TL;DR: New two-dimensional niobium and vanadium carbides have been synthesized by selective etching, at room temperature, of Al from Nb2 AlC and V2AlC, demonstrating good capability to handle high charge-discharge rates.
Abstract: New two-dimensional niobium and vanadium carbides have been synthesized by selective etching, at room temperature, of Al from Nb2AlC and V2AlC, respectively. These new matrials are promising electrode materials for Li-ion batteries, demonstrating good capability to handle high charge–discharge rates. Reversible capacities of 170 and 260 mA·h·g–1 at 1 C, and 110 and 125 mA·h·g–1 at 10 C were obtained for Nb2C and V2C-based electrodes, respectively.

1,444 citations

Journal ArticleDOI
TL;DR: A review of recent work on modeling of organic/metal and organic/organic interfaces can be found in this article, where the strength of the interaction at the interface has been used as the main factor.
Abstract: In this Review, we summarize recent work on modeling of organic/metal and organic/organic interfaces. Some of the models discussed have a semiempirical approach, that is, experimentally derived values are used in combination with theory, and others rely completely of calculations. The models are categorized according to the types of interfaces they apply to, and the strength of the interaction at the interface has been used as the main factor. We explain the basics of the models, their use, and give examples on how the models correlate with experimental results. We stress that given the complexity of organic/metal and organic/organic interface formation, it is crucial to know the exact way in which the interface was formed before choosing the model that is applicable, as none of the models presented covers the whole range of interface interaction strengths (weak physisorption to strong chemisorption).

1,436 citations


Authors

Showing all 15844 results

NameH-indexPapersCitations
Rui Zhang1512625107917
Jun Lu135152699767
Jean-Luc Brédas134102685803
Lars Wallentin12476761020
S. Shankar Sastry12285886155
Gerhard Andersson11890249159
Olle Inganäs11362750562
Antonio Facchetti11160251885
Ray H. Baughman11061660009
Michel W. Barsoum10654360539
Louis J. Ignarro10633546008
Per Björntorp10538640321
Jan Lubinski10368952120
Magnus Johannesson10234240776
Barbara Riegel10150777674
Network Information
Related Institutions (5)
Lund University
124.6K papers, 5M citations

96% related

Katholieke Universiteit Leuven
176.5K papers, 6.2M citations

94% related

National University of Singapore
165.4K papers, 5.4M citations

93% related

University of Copenhagen
149.7K papers, 5.9M citations

93% related

University of Southern California
169.9K papers, 7.8M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
202385
2022359
20213,190
20203,210
20193,029