Institution
Louisiana State University
Education•Baton Rouge, Louisiana, United States•
About: Louisiana State University is a(n) education organization based out in Baton Rouge, Louisiana, United States. It is known for research contribution in the topic(s): Population & Poison control. The organization has 40206 authors who have published 76587 publication(s) receiving 2566076 citation(s). The organization is also known as: LSU & Louisiana State University and Agricultural and Mechanical College.
Topics: Population, Poison control, Wetland, Autism, Sediment
Papers published on a yearly basis
Papers
More filters
University of Massachusetts Amherst1, University of Michigan2, University of New Mexico3, University of British Columbia4, Texas A&M University5, University of Minnesota6, University of Warwick7, Dalhousie University8, Colorado School of Mines9, University of Ljubljana10, Graz University of Technology11, Louisiana State University12
TL;DR: M mothur is used as a case study to trim, screen, and align sequences; calculate distances; assign sequences to operational taxonomic units; and describe the α and β diversity of eight marine samples previously characterized by pyrosequencing of 16S rRNA gene fragments.
Abstract: mothur aims to be a comprehensive software package that allows users to use a single piece of software to analyze community sequence data. It builds upon previous tools to provide a flexible and powerful software package for analyzing sequencing data. As a case study, we used mothur to trim, screen, and align sequences; calculate distances; assign sequences to operational taxonomic units; and describe the alpha and beta diversity of eight marine samples previously characterized by pyrosequencing of 16S rRNA gene fragments. This analysis of more than 222,000 sequences was completed in less than 2 h with a laptop computer.
14,946 citations
TL;DR: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations, and has reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-generation sequencing, deep exome sequencing, and dense microarray genotyping.
Abstract: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.
9,821 citations
TL;DR: This is the first direct detection of gravitational waves and the first observation of a binary black hole merger, and these observations demonstrate the existence of binary stellar-mass black hole systems.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of $1.0 \times 10^{-21}$. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 {\sigma}. The source lies at a luminosity distance of $410^{+160}_{-180}$ Mpc corresponding to a redshift $z = 0.09^{+0.03}_{-0.04}$. In the source frame, the initial black hole masses are $36^{+5}_{-4} M_\odot$ and $29^{+4}_{-4} M_\odot$, and the final black hole mass is $62^{+4}_{-4} M_\odot$, with $3.0^{+0.5}_{-0.5} M_\odot c^2$ radiated in gravitational waves. All uncertainties define 90% credible intervals.These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.
8,011 citations
Max Planck Society1, Yale University2, Space Telescope Science Institute3, Harvard University4, University of Colorado Boulder5, Columbia University6, University of Toronto7, Argonne National Laboratory8, Ohio State University9, European Southern Observatory10, Aix-Marseille University11, ETH Zurich12, California Institute of Technology13, New York University14, Louisiana State University15, Australian National University16, Cornell University17, University College London18, Goddard Space Flight Center19, Leibniz Institute for Astrophysics Potsdam20
TL;DR: Astropy as discussed by the authors is a Python package for astronomy-related functionality, including support for domain-specific file formats such as flexible image transport system (FITS) files, Virtual Observatory (VO) tables, common ASCII table formats, unit and physical quantity conversions, physical constants specific to astronomy, celestial coordinate and time transformations, world coordinate system (WCS) support, generalized containers for representing gridded as well as tabular data, and a framework for cosmological transformations and conversions.
Abstract: We present the first public version (v02) of the open-source and community-developed Python package, Astropy This package provides core astronomy-related functionality to the community, including support for domain-specific file formats such as flexible image transport system (FITS) files, Virtual Observatory (VO) tables, and common ASCII table formats, unit and physical quantity conversions, physical constants specific to astronomy, celestial coordinate and time transformations, world coordinate system (WCS) support, generalized containers for representing gridded as well as tabular data, and a framework for cosmological transformations and conversions Significant functionality is under activedevelopment, such as a model fitting framework, VO client and server tools, and aperture and point spread function (PSF) photometry tools The core development team is actively making additions and enhancements to the current code base, and we encourage anyone interested to participate in the development of future Astropy versions
7,158 citations
TL;DR: The review as discussed by the authors summarizes much of particle physics and cosmology using data from previous editions, plus 3,283 new measurements from 899 Japers, including the recently discovered Higgs boson, leptons, quarks, mesons and baryons.
Abstract: The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,283 new measurements from 899 Japers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as heavy neutrinos, supersymmetric and technicolor particles, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Supersymmetry, Extra Dimensions, Particle Detectors, Probability, and Statistics. Among the 112 reviews are many that are new or heavily revised including those on: Dark Energy, Higgs Boson Physics, Electroweak Model, Neutrino Cross Section Measurements, Monte Carlo Neutrino Generators, Top Quark, Dark Matter, Dynamical Electroweak Symmetry Breaking, Accelerator Physics of Colliders, High-Energy Collider Parameters, Big Bang Nucleosynthesis, Astrophysical Constants and Cosmological Parameters.
7,156 citations
Authors
Showing all 40206 results
Name | H-index | Papers | Citations |
---|---|---|---|
H. S. Chen | 179 | 2401 | 178529 |
John A. Rogers | 177 | 1341 | 127390 |
Omar M. Yaghi | 165 | 459 | 163918 |
Barry M. Popkin | 157 | 751 | 90453 |
John E. Morley | 154 | 1377 | 97021 |
Claude Bouchard | 153 | 1076 | 115307 |
Ruth J. F. Loos | 142 | 647 | 92485 |
Ali Khademhosseini | 140 | 887 | 76430 |
Shanhui Fan | 139 | 1292 | 82487 |
Joseph E. LeDoux | 139 | 478 | 91500 |
Christopher T. Walsh | 139 | 819 | 74314 |
Kenneth A. Dodge | 138 | 468 | 79640 |
Steven B. Heymsfield | 132 | 679 | 77220 |
George A. Bray | 131 | 896 | 100975 |
Zhanhu Guo | 128 | 886 | 53378 |