scispace - formally typeset
Search or ask a question
Institution

Louisiana State University

EducationBaton Rouge, Louisiana, United States
About: Louisiana State University is a education organization based out in Baton Rouge, Louisiana, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 40206 authors who have published 76587 publications receiving 2566076 citations. The organization is also known as: LSU & Louisiana State University and Agricultural and Mechanical College.
Topics: Population, Poison control, Wetland, Autism, Sediment


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present new Sr isotope, grain-size and clastic flux data and synthesize existing proxies to reconstruct changing chemical erosion in the northern South China Sea since the Oligocene, using the links between weathering rates and monsoon strength established in younger sediments as a way to infer intensity.

369 citations

Journal ArticleDOI
TL;DR: This study demonstrates the feasibility, and necessity, of large-scale, long-term sampling in multiple dimensions for accurately measuring species richness and diversity in tropical forest communities.
Abstract: To test the hypotheses that fruit-feeding nymphalid butterflies are randomly distributed in space and time, a community of fruit-feeding nymphalid butterflies was sampled at monthly intervals for one year by trapping 6690 individuals of 130 species in the canopy and understory of four forest habitats: primary, higraded, secondary, and edge. The overall species abundance distribution was well described by a lognormal distribution. Total species diversity (γ-diversity) was partitioned into additive components within and among community subdivisions (α-diversity andβ-diversity) in vertical, horizontal and temporal dimensions. Although community subdivisions showed high similarity (1−β-diversity/γ-diversity), significantβ-diversity existed in each dimension. Individual abundance and observed species richness was lower in the canopy than in the understory. However, rarefaction analysis and species accumulation curves revealed that canopy had higher species richness than understory. Observed species richness was roughly equal in all habitats, but individual abundance was much greater in edge, largely due to a single, specialist species. Rarefaction analysis and species accumulation curves showed that edge had significantly lower species richness than all other habitats. Samples from a single habitat, height and time contained only a small fraction of the total community species richness. This study demonstrates the feasibility, and necessity, of large-scale, long-term sampling in multiple dimensions for accurately measuring species richness and diversity in tropical forest communities. We discuss the importance of such studies in conservation biology.

369 citations

Journal ArticleDOI
A. Aab1, P. Abreu2, Marco Aglietta3, I. Al Samarai4  +415 moreInstitutions (65)
22 Sep 2017-Science
TL;DR: The Pierre Auger Collaboration reports the observation of thousands of cosmic rays with ultrahigh energies of several exa–electron volts, arriving in a slightly dipolar distribution, showing that they originate outside the Milky Way Galaxy.
Abstract: Cosmic rays are atomic nuclei arriving from outer space that reach the highest energies observed in nature Clues to their origin come from studying the distribution of their arrival directions Using 3 × 10 4 cosmic rays with energies above 8 × 10 18 electron volts, recorded with the Pierre Auger Observatory from a total exposure of 76,800 km 2 sr year, we determined the existence of anisotropy in arrival directions The anisotropy, detected at more than a 52σ level of significance, can be described by a dipole with an amplitude of 65 − 09 + 13 percent toward right ascension α d = 100 ± 10 degrees and declination δ d = − 24 − 13 + 12 degrees That direction indicates an extragalactic origin for these ultrahigh-energy particles

369 citations

Journal ArticleDOI
TL;DR: Evaluation of the expression, subcellular localization, biochemical properties, and potential functions of LEA proteins in animal species during water stress shows they are targeted to multiple cellular locations, including mitochondria, and evidence supports that LEA protein stabilize vitrified sugar glasses thought to be important in the dried state.
Abstract: Late embryogenesis abundant (LEA) proteins are extremely hydrophilic proteins that were first identified in land plants. Intracellular accumulation is tightly correlated with acquisition of desiccation tolerance, and data support their capacity to stabilize other proteins and membranes during drying, especially in the presence of sugars like trehalose. Exciting reports now show that LEA proteins are not restricted to plants; multiple forms are expressed in desiccation-tolerant animals from at least four phyla. We evaluate here the expression, subcellular localization, biochemical properties, and potential functions of LEA proteins in animal species during water stress. LEA proteins are intrinsically unstructured in aqueous solution, but surprisingly, many assume their native conformation during drying. They are targeted to multiple cellular locations, including mitochondria, and evidence supports that LEA proteins stabilize vitrified sugar glasses thought to be important in the dried state. More in vivo experimentation will be necessary to fully unravel the multiple functional properties of these macromolecules during water stress.

368 citations

Journal ArticleDOI
TL;DR: This study outlines a phylogenomic approach using a novel class of phylogenetic markers derived from ultraconserved elements and flanking DNA, and shows that this class of marker is useful for recovering deep-level phylogeny in placental mammals.
Abstract: Phylogenomics offers the potential to fully resolve the Tree of Life, but increasing genomic coverage also reveals conflicting evolutionary histories among genes, demanding new analytical strategies for elucidating a single history of life. Here, we outline a phylogenomic approach using a novel class of phylogenetic markers derived from ultraconserved elements and flanking DNA. Using species-tree analysis that accounts for discord among hundreds of independent loci, we show that this class of marker is useful for recovering deep-level phylogeny in placental mammals. In broad outline, our phylogeny agrees with recent phylogenomic studies of mammals, including several formerly controversial relationships. Our results also inform two outstanding questions in placental mammal phylogeny involving rapid speciation, where species-tree methods are particularly needed. Contrary to most phylogenomic studies, our study supports a first-diverging placental mammal lineage that includes elephants and tenrecs (Afrotheria). The level of conflict among gene histories is consistent with this basal divergence occurring in or near a phylogenetic ‘‘anomaly zone’’ where a failure to account for coalescent stochasticity will mislead phylogenetic inference. Addressing a long-standing phylogenetic mystery, we find some support from a high genomic coverage data set for a traditional placement of bats (Chiroptera) sister to a clade containing Perissodactyla, Cetartiodactyla, and Carnivora, and not nested within the latter clade, as has been suggested recently, although other results were conflicting. One of the most remarkable findings of our study is that ultraconserved elements and their flanking DNA are a rich source of phylogenetic information with strong potential for application across Amniotes. [Supplemental material is available for this article.]

368 citations


Authors

Showing all 40485 results

NameH-indexPapersCitations
H. S. Chen1792401178529
John A. Rogers1771341127390
Omar M. Yaghi165459163918
Barry M. Popkin15775190453
John E. Morley154137797021
Claude Bouchard1531076115307
Ruth J. F. Loos14264792485
Ali Khademhosseini14088776430
Shanhui Fan139129282487
Joseph E. LeDoux13947891500
Christopher T. Walsh13981974314
Kenneth A. Dodge13846879640
Steven B. Heymsfield13267977220
George A. Bray131896100975
Zhanhu Guo12888653378
Network Information
Related Institutions (5)
Pennsylvania State University
196.8K papers, 8.3M citations

93% related

University of Minnesota
257.9K papers, 11.9M citations

93% related

University of California, Davis
180K papers, 8M citations

92% related

University of Texas at Austin
206.2K papers, 9M citations

92% related

Ohio State University
222.7K papers, 8.3M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202362
2022608
20213,042
20203,095
20192,874
20182,762