scispace - formally typeset
Search or ask a question
Institution

Louisiana State University

EducationBaton Rouge, Louisiana, United States
About: Louisiana State University is a education organization based out in Baton Rouge, Louisiana, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 40206 authors who have published 76587 publications receiving 2566076 citations. The organization is also known as: LSU & Louisiana State University and Agricultural and Mechanical College.
Topics: Population, Poison control, Wetland, Autism, Sediment


Papers
More filters
Journal ArticleDOI
TL;DR: The Learning Transfer System Inventory (LTSI) as discussed by the authors was developed and administered to 1,616 training participants from a wide range of organizations to measure factors in the system affecting transfer of learning.
Abstract: This study expands on the concept of the learning transfer system and reports on the validation of an instrument to measure factors in the system affecting transfer of learning. The Learning Transfer System Inventory (LTSI) was developed and administered to 1,616 training participants from a wide range of organizations. Exploratory common factor analysis revealed a clean interpretable factor structure of sixteen transfer system constructs. Second-order factor analysis suggested a three-factor higher order structure of climate, job utility, and rewards. The instrument development process, factor structure, and use of the LTSI as a diagnostic tool in organizations are discussed.© 2000 Jossey-Bass, A Publishing Unit of John Wiley & Sons, Inc.

839 citations

Journal ArticleDOI
TL;DR: While the process is essentially ubiquitous in coastal areas, the assessment of its magnitude at any one location is subject to enough variability that measurements should be made by a variety of techniques and over large enough spatial and temporal scales to capture the majority of these changing conditions.

838 citations

Journal ArticleDOI
01 Apr 2010-Nature
TL;DR: This work shows that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets and shows evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience.
Abstract: The zebra finch is an important model organism in several fields with unique relevance to human neuroscience. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken-the only bird with a sequenced genome until now. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour.

837 citations

Journal ArticleDOI
TL;DR: Sunitinib-based therapy has the potential to modulate antitumor immunity by reversing MDSC-mediated tumor-induced immunosuppression and is correlated with reversal of type 1 T-cell suppression.
Abstract: Purpose: Immune dysfunction reported in renal cell carcinoma (RCC) patients may contribute to tumor progression. Myeloid-derived suppressor cells (MDSC) represent one mechanism by which tumors induce T-cell suppression. Several factors pivotal to the accumulation of MDSC are targeted by the tyrosine kinase inhibitor, sunitinib. The effect of sunitinib on MDSC-mediated immunosuppression in RCC patients has been investigated. Experimental Design: Patient peripheral blood levels of MDSC and regulatory T-cell (Treg) and T-cell production of IFN-γ were evaluated before and after sunitinib treatment. Correlations between MDSC and Treg normalization as well as T-cell production of IFN-γ were examined. The in vitro effect of sunitinib on patient MDSC was evaluated. Results: Metastatic RCC patients had elevated levels of CD33 + HLA-DR − and CD15 + CD14 − MDSC, and these were partially overlapping populations. Treatment with sunitinib resulted in significant reduction in MDSC measured by several criteria. Sunitinib-mediated reduction in MDSC was correlated with reversal of type 1 T-cell suppression, an effect that could be reproduced by the depletion of MDSC in vitro . MDSC reduction in response to sunitinib correlated with a reversal of CD3 + CD4 + CD25 hi Foxp3 + Treg cell elevation. No correlation existed between a change in tumor burden and a change in MDSC, Treg, or T-cell production of IFN-γ. In vitro addition of sunitinib reduced MDSC viability and suppressive effect when used at ≥1.0 μg/mL. Sunitinib did not induce MDSC maturation in vitro . Conclusions: Sunitinib-based therapy has the potential to modulate antitumor immunity by reversing MDSC-mediated tumor-induced immunosuppression.

830 citations

Journal ArticleDOI
TL;DR: The results indicate that increased synthesis of prostaglandins and thromboxanes in lipopolysaccharide-stimulated macrophages results from selective expression of COX-2, a newly discovered mitogen-inducible cyclooxygenase encoded by a 4-kilobase mRNA.

828 citations


Authors

Showing all 40485 results

NameH-indexPapersCitations
H. S. Chen1792401178529
John A. Rogers1771341127390
Omar M. Yaghi165459163918
Barry M. Popkin15775190453
John E. Morley154137797021
Claude Bouchard1531076115307
Ruth J. F. Loos14264792485
Ali Khademhosseini14088776430
Shanhui Fan139129282487
Joseph E. LeDoux13947891500
Christopher T. Walsh13981974314
Kenneth A. Dodge13846879640
Steven B. Heymsfield13267977220
George A. Bray131896100975
Zhanhu Guo12888653378
Network Information
Related Institutions (5)
Pennsylvania State University
196.8K papers, 8.3M citations

93% related

University of Minnesota
257.9K papers, 11.9M citations

93% related

University of California, Davis
180K papers, 8M citations

92% related

University of Texas at Austin
206.2K papers, 9M citations

92% related

Ohio State University
222.7K papers, 8.3M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202362
2022608
20213,042
20203,095
20192,874
20182,762