scispace - formally typeset
Search or ask a question
Institution

Louisiana State University

EducationBaton Rouge, Louisiana, United States
About: Louisiana State University is a education organization based out in Baton Rouge, Louisiana, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 40206 authors who have published 76587 publications receiving 2566076 citations. The organization is also known as: LSU & Louisiana State University and Agricultural and Mechanical College.
Topics: Population, Poison control, Wetland, Autism, Sediment


Papers
More filters
Journal ArticleDOI
Y. Ashie1, J. Hosaka1, K. Ishihara1, Yoshitaka Itow1, J. Kameda1, Yusuke Koshio1, A. Minamino1, C. Mitsuda1, M. Miura1, Shigetaka Moriyama1, Masayuki Nakahata1, Toshio Namba1, R. Nambu1, Y. Obayashi1, Masato Shiozawa1, Yoshihiro Suzuki1, Y. Takeuchi1, K. Taki1, Shinya Yamada1, M. Ishitsuka1, Takaaki Kajita1, K. Kaneyuki1, Shoei Nakayama1, A. Okada1, Ko Okumura1, C. Saji1, Y. Takenaga1, S. Clark2, Shantanu Desai2, E. Kearns2, S. Likhoded2, J. L. Stone2, L. R. Sulak2, W. Wang2, M. Goldhaber3, David William Casper4, J. P. Cravens4, W. Gajewski4, W. R. Kropp4, D. W. Liu4, S. Mine4, Michael B. Smy4, Henry W. Sobel4, C. W. Sterner4, Mark R. Vagins4, K. S. Ganezer5, John Hill5, W. E. Keig5, J. S. Jang6, J. Y. Kim6, I. T. Lim6, Kate Scholberg7, C. W. Walter7, R. W. Ellsworth8, S. Tasaka9, G. Guillian, A. Kibayashi, John G. Learned, S. Matsuno, D. Takemori, M. D. Messier10, Y. Hayato, A. K. Ichikawa, T. Ishida, T. Ishii, T. Iwashita, Takashi Kobayashi, T. Maruyama11, Koji Nakamura, K. Nitta, Yuichi Oyama, Makoto Sakuda12, Y. Totsuka, Atsumu Suzuki13, Masaya Hasegawa14, K. Hayashi14, I. Kato14, H. Maesaka14, Taichi Morita14, Tsuyoshi Nakaya14, K. Nishikawa14, T. Sasaki14, S. Ueda14, Shoji Yamamoto14, Todd Haines4, Todd Haines15, S. Dazeley16, S. Hatakeyama16, R. Svoboda16, E. Blaufuss17, J. A. Goodman17, G. W. Sullivan17, D. Turcan17, Alec Habig18, Y. Fukuda19, C. K. Jung20, T. Kato20, Katsuhiro Kobayashi20, Magdalena Malek20, C. Mauger20, C. McGrew20, A. Sarrat20, E. Sharkey20, C. Yanagisawa20, T. Toshito21, Kazumasa Miyano22, N. Tamura22, J. Ishii23, Y. Kuno23, Minoru Yoshida23, S. B. Kim24, J. Yoo24, H. Okazawa, T. Ishizuka25, Y. Choi26, H. Seo26, Y. Gando27, Takehisa Hasegawa27, Kunio Inoue27, J. Shirai27, A. Suzuki27, Masatoshi Koshiba1, Y. Nakajima28, Kyoshi Nishijima28, T. Harada29, Hirokazu Ishino29, Y. Watanabe29, D. Kielczewska30, D. Kielczewska4, J. Zalipska30, H. G. Berns31, R. Gran31, K. K. Shiraishi31, A. L. Stachyra31, K. Washburn31, R. J. Wilkes31 
TL;DR: In this article, a combined analysis of fully-contained, partially-contained and upward-going muon atmospheric neutrino data from a 1489 d exposure of the Super-Kamiokande detector is presented.
Abstract: We present a combined analysis of fully-contained, partially-contained and upward-going muon atmospheric neutrino data from a 1489 d exposure of the Super-Kamiokande detector. The data samples span roughly five decades in neutrino energy, from 100 MeV to 10 TeV. A detailed Monte Carlo comparison is described and presented. The data is fit to the Monte Carlo expectation, and is found to be consistent with neutrino oscillations of {nu}{sub {mu}}{r_reversible}{nu}{sub {tau}} with sin{sup 2}2{theta}>0.92 and 1.5x10{sup -3}<{delta}m{sup 2}<3.4x10{sup -3} eV{sup 2} at 90% confidence level.

701 citations

Journal ArticleDOI
TL;DR: The complete genomes were sequenced for ten hepatitis B virus (HBV) strains that were most similar to genotype D, although encoding d specificity, and three divergent strains, which should represent a new HBV genotype, for which the designation H is proposed.
Abstract: The complete genomes were sequenced for ten hepatitis B virus (HBV) strains. Two of them, from Spain and Sweden, were most similar to genotype D, although encoding d specificity. Five of them were from Central America and belonged to genotype F. Two strains from Nicaragua and one from Los Angeles, USA, showed divergences of 3·1–4·1% within the small S gene from genotype F strains and were recognized previously as a divergent clade within genotype F. The complete genomes of the two genotype D strains were found to differ from published genotype D strains by 2·8–4·6%. Their S genes encoded Lys122, Thr127 and Lys160, corresponding to the putative new subtype adw3 within this genotype, previously known to specify ayw2, ayw3 or, rarely, ayw4. The complete genomes of the three divergent strains diverged by 0·8–2·5% from each other, 7·2–10·2% from genotype F strains and 13·2–15·7% from other HBV strains. Since pairwise comparisons of 82 complete HBV genomes of intratypic and intertypic divergences ranged from 0·1 to 7·4% and 6·8 to 17·1%, respectively, the three sequenced strains should represent a new HBV genotype, for which the designation H is proposed. In the polymerase region, the three strains had 16 unique conserved amino acid residues not present in genotype F strains. So far, genotype H has been encountered in Nicaragua, Mexico and California. Phylogenetic analysis of the complete genomes and subgenomes of the three strains showed them clustering with genotype F but forming a separate branch supported by 100% bootstrap. Being most similar to genotype F, known to be an Amerindian genotype, genotype H has most likely split off from genotype F within the New World.

701 citations

Journal ArticleDOI
TL;DR: This work explores an array of prospective redesigns of plant systems at various scales aimed at increasing crop yields through improved photosynthetic efficiency and performance, and suggests some proposed redesigns are certain to face obstacles that will require alternate routes.
Abstract: The world’s crop productivity is stagnating whereas population growth, rising affluence, and mandates for biofuels put increasing demands on agriculture. Meanwhile, demand for increasing cropland competes with equally crucial global sustainability and environmental protection needs. Addressing this looming agricultural crisis will be one of our greatest scientific challenges in the coming decades, and success will require substantial improvements at many levels. We assert that increasing the efficiency and productivity of photosynthesis in crop plants will be essential if this grand challenge is to be met. Here, we explore an array of prospective redesigns of plant systems at various scales, all aimed at increasing crop yields through improved photosynthetic efficiency and performance. Prospects range from straightforward alterations, already supported by preliminary evidence of feasibility, to substantial redesigns that are currently only conceptual, but that may be enabled by new developments in synthetic biology. Although some proposed redesigns are certain to face obstacles that will require alternate routes, the efforts should lead to new discoveries and technical advances with important impacts on the global problem of crop productivity and bioenergy production.

700 citations

Journal ArticleDOI
TL;DR: It is suggested that IRS- 1 is a novel direct substrate for IKK and that phosphorylation of IRS-1 at Ser312 (and other sites) by IKK may contribute to the insulin resistance mediated by activation of inflammatory pathways.

697 citations

Journal ArticleDOI
TL;DR: A complete understanding of the function of NOX is important to direct the role of this enzyme towards host defense and tissue repair or increase resistance to stress in a timely and disease-specific manner.
Abstract: Oxygen-derived free radicals, collectively termed reactive oxygen species (ROS), play important roles in immunity, cell growth, and cell signaling. In excess, however, ROS are lethal to cells, and the overproduction of these molecules leads to a myriad of devastating diseases. The key producers of ROS in many cells are the NOX family of NADPH oxidases, of which there are seven members, with various tissue distributions and activation mechanisms. NADPH oxidase is a multisubunit enzyme comprising membrane and cytosolic components, which actively communicate during the host responses to a wide variety of stimuli, including viral and bacterial infections. This enzymatic complex has been implicated in many functions ranging from host defense to cellular signaling and the regulation of gene expression. NOX deficiency might lead to immunosuppression, while the intracellular accumulation of ROS results in the inhibition of viral propagation and apoptosis. However, excess ROS production causes cellular stress, leading to various lethal diseases, including autoimmune diseases and cancer. During the later stages of injury, NOX promotes tissue repair through the induction of angiogenesis and cell proliferation. Therefore, a complete understanding of the function of NOX is important to direct the role of this enzyme towards host defense and tissue repair or increase resistance to stress in a timely and disease-specific manner.

692 citations


Authors

Showing all 40485 results

NameH-indexPapersCitations
H. S. Chen1792401178529
John A. Rogers1771341127390
Omar M. Yaghi165459163918
Barry M. Popkin15775190453
John E. Morley154137797021
Claude Bouchard1531076115307
Ruth J. F. Loos14264792485
Ali Khademhosseini14088776430
Shanhui Fan139129282487
Joseph E. LeDoux13947891500
Christopher T. Walsh13981974314
Kenneth A. Dodge13846879640
Steven B. Heymsfield13267977220
George A. Bray131896100975
Zhanhu Guo12888653378
Network Information
Related Institutions (5)
Pennsylvania State University
196.8K papers, 8.3M citations

93% related

University of Minnesota
257.9K papers, 11.9M citations

93% related

University of California, Davis
180K papers, 8M citations

92% related

University of Texas at Austin
206.2K papers, 9M citations

92% related

Ohio State University
222.7K papers, 8.3M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202362
2022608
20213,042
20203,095
20192,874
20182,762