scispace - formally typeset
Search or ask a question
Institution

Louisiana State University

EducationBaton Rouge, Louisiana, United States
About: Louisiana State University is a education organization based out in Baton Rouge, Louisiana, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 40206 authors who have published 76587 publications receiving 2566076 citations. The organization is also known as: LSU & Louisiana State University and Agricultural and Mechanical College.
Topics: Population, Poison control, Wetland, Autism, Sediment


Papers
More filters
Journal ArticleDOI
TL;DR: The hypothesis of widespread transcriptional alterations, misregulation of RNAs involved in metal ion homeostasis, TF signaling deficits, decreases in neurotrophic support and activated apoptotic and neuroinflammatory signaling in moderately affected AD hippocampal CA1 is supported.
Abstract: Alterations in transcription, RNA editing, translation, protein processing, and clearance are a consistent feature of Alzheimer's disease (AD) brain. To extend our initial study (Alzheimer Reports [2000] 3:161-167), RNA samples isolated from control and AD hippocampal cornu ammonis 1 (CA1) were analyzed for 12633 gene and expressed sequence tag (EST) expression levels using DNA microarrays (HG-U95Av2 Genechips; Affymetrix, Santa Clara, CA). Hippocampal CA1 tissues were carefully selected from several hundred potential specimens obtained from domestic and international brain banks. To minimize the effects of individual differences in gene expression, RNA of high spectral quality (A260/280 ≥ 1.9) was pooled from CA1 of six control or six AD subjects. Results were compared as a group; individual gene expression patterns for the most-changed RNA message levels were also profiled. There were no significant differences in age, postmortem interval (mean ≤ 2.1 hr) nor tissue pH (range 6.6–6.9) between the two brain groups. AD tissues were derived from subjects clinically classified as CDR 2-3 (CERAD/NIA). Expression data were analyzed using GeneSpring (Silicon Genetics, Redwood City, CA) and Microarray Data Mining Tool (Affymetrix) software. Compared to controls and 354 background/alignment markers, AD brain showed a generalized depression in brain gene transcription, including decreases in RNA encoding transcription factors (TFs), neurotrophic factors, signaling elements involved in synaptic plasticity such as synaptophysin, metallothionein III, and metal regulatory factor-1. Three- or morefold increases in RNAs encoding DAXX, cPLA2, CDP5, NF-κBp52/p100, FAS, βAPP, DPP1, NFIL6, IL precursor, B94, HB15, COX-2, and CEX-1 signals were strikingly apparent. These data support the hypothesis of widespread transcriptional alterations, misregulation of RNAs involved in metal ion homeostasis, TF signaling deficits, decreases in neurotrophic support and activated apoptotic and neuroinflammatory signaling in moderately affected AD hippocampal CA1. © 2002 Wiley-Liss, Inc.

526 citations

Journal ArticleDOI
TL;DR: This review addresses specific variables in diagnosis and classification of comorbid symptoms, and proposes potential avenues for research and practice with respect to differential diagnosis of autism spectrum disorder.

525 citations

Journal ArticleDOI
TL;DR: The concepts of keratins and of keratinized or cornified epithelia need clarification and revision concerning the structure and function of kerATins and keratin filaments in various epithelium of different species, as well as of Keratin genes and their modifications in view of recent research.
Abstract: Historically, the term ‘keratin’ stood for all of the proteins extracted from skin modifications, such as horns, claws and hooves. Subsequently, it was realized that this keratin is actually a mixture of keratins, keratin filament-associated proteins and other proteins, such as enzymes. Keratins were then defined as certain filament-forming proteins with specific physicochemical properties and extracted from the cornified layer of the epidermis, whereas those filament-forming proteins that were extracted from the living layers of the epidermis were grouped as ‘prekeratins’ or ‘cytokeratins’. Currently, the term ‘keratin’ covers all intermediate filament-forming proteins with specific physicochemical properties and produced in any vertebrate epithelia. Similarly, the nomenclature of epithelia as cornified, keratinized or non-keratinized is based historically on the notion that only the epidermis of skin modifications such as horns, claws and hooves is cornified, that the non-modified epidermis is a keratinized stratified epithelium, and that all other stratified and non-stratified epithelia are non-keratinized epithelia. At this point in time, the concepts of keratins and of keratinized or cornified epithelia need clarification and revision concerning the structure and function of keratin and keratin filaments in various epithelia of different species, as well as of keratin genes and their modifications, in view of recent research, such as the sequencing of keratin proteins and their genes, cell culture, transfection of epithelial cells, immunohistochemistry and immunoblotting. Recently, new functions of keratins and keratin filaments in cell signaling and intracellular vesicle transport have been discovered. It is currently understood that all stratified epithelia are keratinized and that some of these keratinized stratified epithelia cornify by forming a Stratum corneum. The processes of keratinization and cornification in skin modifications are different especially with respect to the keratins that are produced. Future research in keratins will provide a better understanding of the processes of keratinization and cornification of stratified epithelia, including those of skin modifications, of the adaptability of epithelia in general, of skin diseases, and of the changes in structure and function of epithelia in the course of evolution. This review focuses on keratins and keratin filaments in mammalian tissue but keratins in the tissues of some other vertebrates are also considered.

524 citations

Journal ArticleDOI
TL;DR: A pattern of repeat-mediated chromosomal rearrangement, and high coadaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence between these species of Drosophila.
Abstract: We have sequenced the genome of a second Drosophila species, Drosophila pseudoobscura, and compared this to the genome sequence of Drosophila melanogaster, a primary model organism. Throughout evolution the vast majority of Drosophila genes have remained on the same chromosome arm, but within each arm gene order has been extensively reshuffled, leading to a minimum of 921 syntenic blocks shared between the species. A repetitive sequence is found in the A pseudoobscura genome at many junctions between adjacent syntenic blocks. Analysis of this novel repetitive element family suggests that recombination between offset elements may have given rise to many paracentric inversions, thereby contributing to the shuffling of gene order in the D. pseudoobscura lineage. Based on sequence similarity and synteny, 10,516 putative orthologs have been identified as a core gene set conserved over 25-55 million years (Myr) since the pseudoobscura/melanogaster divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome-wide average, consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than random and nearby sequences between the species-but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a pattern of repeat-mediated chromosomal rearrangement, and high coadaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence between these species of Drosophila.

524 citations

Journal ArticleDOI
TL;DR: A novel microfluidic device that can selectively and specifically isolate exceedingly small numbers of circulating tumor cells (CTCs) through a monoclonal antibody (mAB) mediated process by sampling large input volumes of whole blood directly in short time periods was demonstrated.
Abstract: A novel microfluidic device that can selectively and specifically isolate exceedingly small numbers of circulating tumor cells (CTCs) through a monoclonal antibody (mAB) mediated process by sampling large input volumes (≥1 mL) of whole blood directly in short time periods ( 97%) by designing capture channels with the appropriate widths and heights. The isolated CTCs were readily released from the mAB capturing surface using trypsin. The released CTCs were then enumerated on-device using a novel, label-free solution conductivity route capable of detecting single tumor cells traveling through the detection electrodes. The conductivity readout provided near 100% detection efficiency and exquisite specificity for CTCs due to scaling factors and the nonoptimal electrical properties of potential interferences (erythrocytes or leukocytes). The simplicity in manufacturing the device and its ease of operation make it attractive for clinical applications requiring one-time use operation.

523 citations


Authors

Showing all 40485 results

NameH-indexPapersCitations
H. S. Chen1792401178529
John A. Rogers1771341127390
Omar M. Yaghi165459163918
Barry M. Popkin15775190453
John E. Morley154137797021
Claude Bouchard1531076115307
Ruth J. F. Loos14264792485
Ali Khademhosseini14088776430
Shanhui Fan139129282487
Joseph E. LeDoux13947891500
Christopher T. Walsh13981974314
Kenneth A. Dodge13846879640
Steven B. Heymsfield13267977220
George A. Bray131896100975
Zhanhu Guo12888653378
Network Information
Related Institutions (5)
Pennsylvania State University
196.8K papers, 8.3M citations

93% related

University of Minnesota
257.9K papers, 11.9M citations

93% related

University of California, Davis
180K papers, 8M citations

92% related

University of Texas at Austin
206.2K papers, 9M citations

92% related

Ohio State University
222.7K papers, 8.3M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202362
2022608
20213,042
20203,095
20192,874
20182,762