scispace - formally typeset
Search or ask a question
Institution

Louisiana Tech University

EducationRuston, Louisiana, United States
About: Louisiana Tech University is a education organization based out in Ruston, Louisiana, United States. It is known for research contribution in the topics: Large Hadron Collider & Tevatron. The organization has 3068 authors who have published 6336 publications receiving 221562 citations. The organization is also known as: LA Tech & Louisiana Polytechnic Institute.


Papers
More filters
Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah4  +2964 moreInstitutions (200)
TL;DR: In this article, a search for the Standard Model Higgs boson in proton-proton collisions with the ATLAS detector at the LHC is presented, which has a significance of 5.9 standard deviations, corresponding to a background fluctuation probability of 1.7×10−9.

9,282 citations

Book
Georges Aad1, E. Abat2, Jalal Abdallah3, Jalal Abdallah4  +3029 moreInstitutions (164)
23 Feb 2020
TL;DR: The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper, where a brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.
Abstract: The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.

3,111 citations

Journal ArticleDOI
01 Jun 2000
TL;DR: The first international meeting devoted to brain-computer interface research and development is summarized, which focuses on the development of appropriate applications, identification of appropriate user groups, and careful attention to the needs and desires of individual users.
Abstract: Over the past decade, many laboratories have begun to explore brain-computer interface (BCI) technology as a radically new communication option for those with neuromuscular impairments that prevent them from using conventional augmentative communication methods. BCI's provide these users with communication channels that do not depend on peripheral nerves and muscles. This article summarizes the first international meeting devoted to BCI research and development. Current BCI's use electroencephalographic (EEG) activity recorded at the scalp or single-unit activity recorded from within cortex to control cursor movement, select letters or icons, or operate a neuroprosthesis. The central element in each BCI is a translation algorithm that converts electrophysiological input from the user into output that controls external devices. BCI operation depends on effective interaction between two adaptive controllers, the user who encodes his or her commands in the electrophysiological input provided to the BCI, and the BCI which recognizes the commands contained in the input and expresses them in device control. Current BCI's have maximum information transfer rates of 5-25 b/min. Achievement of greater speed and accuracy depends on improvements in signal processing, translation algorithms, and user training. These improvements depend on increased interdisciplinary cooperation between neuroscientists, engineers, computer programmers, psychologists, and rehabilitation specialists, and on adoption and widespread application of objective methods for evaluating alternative methods. The practical use of BCI technology depends on the development of appropriate applications, identification of appropriate user groups, and careful attention to the needs and desires of individual users. BCI research and development will also benefit from greater emphasis on peer-reviewed publications, and from adoption of standard venues for presentations and discussion.

2,121 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, Ovsat Abdinov4  +5117 moreInstitutions (314)
TL;DR: A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H→γγ and H→ZZ→4ℓ decay channels.
Abstract: A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H→γγ and H→ZZ→4l decay channels. The results are obtained from a simultaneous fit to the reconstructed invariant mass peaks in the two channels and for the two experiments. The measured masses from the individual channels and the two experiments are found to be consistent among themselves. The combined measured mass of the Higgs boson is mH=125.09±0.21 (stat)±0.11 (syst) GeV.

1,567 citations

Journal ArticleDOI
28 Nov 2002-Nature
TL;DR: The fabrication of exchange-coupled nanocomposites using nanoparticle self-assembly with an energy product that exceeds the theoretical limit of 13 MG Oe for non-exchange- coupled isotropic FePt by over 50 per cent is reported.
Abstract: Exchange-spring magnets are nanocomposites that are composed of magnetically hard and soft phases that interact by magnetic exchange coupling. Such systems are promising for advanced permanent magnetic applications, as they have a large energy product--the combination of permanent magnet field and magnetization--compared to traditional, single-phase materials. Conventional techniques, including melt-spinning, mechanical milling and sputtering, have been explored to prepare exchange-spring magnets. However, the requirement that both the hard and soft phases are controlled at the nanometre scale, to ensure efficient exchange coupling, has posed significant preparation challenges. Here we report the fabrication of exchange-coupled nanocomposites using nanoparticle self-assembly. In this approach, both FePt and Fe3O4 particles are incorporated as nanometre-scale building blocks into binary assemblies. Subsequent annealing converts the assembly into FePt-Fe3Pt nanocomposites, where FePt is a magnetically hard phase and Fe3Pt a soft phase. An optimum exchange coupling, and therefore an optimum energy product, can be obtained by independently tuning the size and composition of the individual building blocks. We have produced exchange-coupled isotropic FePt-Fe3Pt nanocomposites with an energy product of 20.1 MG Oe, which exceeds the theoretical limit of 13 MG Oe for non-exchange-coupled isotropic FePt by over 50 per cent.

1,483 citations


Authors

Showing all 3089 results

NameH-indexPapersCitations
Yang Gao1682047146301
A. Gomes1501862113951
Tim Adye1431898109010
George Alverson1401653105074
I. V. Gorelov1391916103133
Neeti Parashar1351648102857
M. I. Martínez134125179885
M. J. Shochet1331626100125
Sudhir Malik130166998522
Lee Sawyer130134088419
Francois Corriveau128102275729
Iwona Grabowska-Bold12893176796
Alexey Dudarev12898277929
Konstantin Toms12876872496
Tomasz Bold12894577428
Network Information
Related Institutions (5)
Arizona State University
109.6K papers, 4.4M citations

91% related

Virginia Tech
95.2K papers, 2.9M citations

89% related

University of Delaware
54.8K papers, 2M citations

89% related

Pennsylvania State University
196.8K papers, 8.3M citations

89% related

Florida State University
65.3K papers, 2.5M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20238
202239
2021248
2020262
2019260
2018267