scispace - formally typeset
Search or ask a question
Institution

Lund University

EducationLund, Sweden
About: Lund University is a education organization based out in Lund, Sweden. It is known for research contribution in the topics: Population & Cancer. The organization has 42345 authors who have published 124676 publications receiving 5016438 citations. The organization is also known as: Lunds Universitet & University of Lund.


Papers
More filters
Journal ArticleDOI
TL;DR: The survey explains the least squares method and several of its variants which may solve the problem of correlated residuals, viz. repeated and generalized least squares, maximum likelihood method, instrumental variable method, tally principle.

1,479 citations

Journal ArticleDOI
TL;DR: This review gives an overview of the new technologies required and the advances achieved in recent years to bring lignocellulosic ethanol towards industrial production.

1,477 citations

Journal ArticleDOI
Ulf Lindström1

1,477 citations

Journal ArticleDOI
05 Jan 2018-Science
TL;DR: Improved numerical models of oceanographic processes that control oxygen depletion and the large-scale influence of altered biogeochemical cycles are needed to better predict the magnitude and spatial patterns of deoxygenation in the open ocean, as well as feedbacks to climate.
Abstract: BACKGROUND Oxygen concentrations in both the open ocean and coastal waters have been declining since at least the middle of the 20th century. This oxygen loss, or deoxygenation, is one of the most important changes occurring in an ocean increasingly modified by human activities that have raised temperatures, CO 2 levels, and nutrient inputs and have altered the abundances and distributions of marine species. Oxygen is fundamental to biological and biogeochemical processes in the ocean. Its decline can cause major changes in ocean productivity, biodiversity, and biogeochemical cycles. Analyses of direct measurements at sites around the world indicate that oxygen-minimum zones in the open ocean have expanded by several million square kilometers and that hundreds of coastal sites now have oxygen concentrations low enough to limit the distribution and abundance of animal populations and alter the cycling of important nutrients. ADVANCES In the open ocean, global warming, which is primarily caused by increased greenhouse gas emissions, is considered the primary cause of ongoing deoxygenation. Numerical models project further oxygen declines during the 21st century, even with ambitious emission reductions. Rising global temperatures decrease oxygen solubility in water, increase the rate of oxygen consumption via respiration, and are predicted to reduce the introduction of oxygen from the atmosphere and surface waters into the ocean interior by increasing stratification and weakening ocean overturning circulation. In estuaries and other coastal systems strongly influenced by their watershed, oxygen declines have been caused by increased loadings of nutrients (nitrogen and phosphorus) and organic matter, primarily from agriculture; sewage; and the combustion of fossil fuels. In many regions, further increases in nitrogen discharges to coastal waters are projected as human populations and agricultural production rise. Climate change exacerbates oxygen decline in coastal systems through similar mechanisms as those in the open ocean, as well as by increasing nutrient delivery from watersheds that will experience increased precipitation. Expansion of low-oxygen zones can increase production of N 2 O, a potent greenhouse gas; reduce eukaryote biodiversity; alter the structure of food webs; and negatively affect food security and livelihoods. Both acidification and increasing temperature are mechanistically linked with the process of deoxygenation and combine with low-oxygen conditions to affect biogeochemical, physiological, and ecological processes. However, an important paradox to consider in predicting large-scale effects of future deoxygenation is that high levels of productivity in nutrient-enriched coastal systems and upwelling areas associated with oxygen-minimum zones also support some of the world’s most prolific fisheries. OUTLOOK Major advances have been made toward understanding patterns, drivers, and consequences of ocean deoxygenation, but there is a need to improve predictions at large spatial and temporal scales important to ecosystem services provided by the ocean. Improved numerical models of oceanographic processes that control oxygen depletion and the large-scale influence of altered biogeochemical cycles are needed to better predict the magnitude and spatial patterns of deoxygenation in the open ocean, as well as feedbacks to climate. Developing and verifying the next generation of these models will require increased in situ observations and improved mechanistic understanding on a variety of scales. Models useful for managing nutrient loads can simulate oxygen loss in coastal waters with some skill, but their ability to project future oxygen loss is often hampered by insufficient data and climate model projections on drivers at appropriate temporal and spatial scales. Predicting deoxygenation-induced changes in ecosystem services and human welfare requires scaling effects that are measured on individual organisms to populations, food webs, and fisheries stocks; considering combined effects of deoxygenation and other ocean stressors; and placing an increased research emphasis on developing nations. Reducing the impacts of other stressors may provide some protection to species negatively affected by low-oxygen conditions. Ultimately, though, limiting deoxygenation and its negative effects will necessitate a substantial global decrease in greenhouse gas emissions, as well as reductions in nutrient discharges to coastal waters.

1,469 citations

Journal ArticleDOI
TL;DR: The most suitable approach up to now for studying excited-state properties of extended systems is the Green function method as discussed by the authors, which has turned out to be a fruitful approximation to the self-energy.
Abstract: Calculations of ground-state and excited-state properties of materials have been one of the major goals of condensed matter physics. Ground-state properties of solids have been extensively investigated for several decades within the standard density functional theory. Excited-state properties, on the other hand, were relatively unexplored in ab initio calculations until a decade ago. The most suitable approach up to now for studying excited-state properties of extended systems is the Green function method. To calculate the Green function one requires the self-energy operator which is non-local and energy dependent. In this article we describe the GW approximation which has turned out to be a fruitful approximation to the self-energy. The Green function theory, numerical methods for carrying out the self-energy calculations, simplified schemes, and applications to various systems are described. Self-consistency issue and new developments beyond the GW approximation are also discussed as well as the success and shortcomings of the GW approximation.

1,458 citations


Authors

Showing all 42777 results

NameH-indexPapersCitations
Yi Chen2174342293080
Fred H. Gage216967185732
Kari Stefansson206794174819
Mark I. McCarthy2001028187898
Ruedi Aebersold182879141881
Jie Zhang1784857221720
Feng Zhang1721278181865
Martin G. Larson171620117708
Michael Snyder169840130225
Unnur Thorsteinsdottir167444121009
Anders Björklund16576984268
Carl W. Cotman165809105323
Dennis R. Burton16468390959
Jaakko Kaprio1631532126320
Panos Deloukas162410154018
Network Information
Related Institutions (5)
Katholieke Universiteit Leuven
176.5K papers, 6.2M citations

93% related

McGill University
162.5K papers, 6.9M citations

93% related

Utrecht University
139.3K papers, 6.2M citations

93% related

Imperial College London
209.1K papers, 9.3M citations

93% related

University of British Columbia
209.6K papers, 9.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023246
2022698
20216,295
20206,032
20195,584
20185,249