scispace - formally typeset
Search or ask a question
Institution

Lund University

EducationLund, Sweden
About: Lund University is a education organization based out in Lund, Sweden. It is known for research contribution in the topics: Population & Cancer. The organization has 42345 authors who have published 124676 publications receiving 5016438 citations. The organization is also known as: Lunds Universitet & University of Lund.


Papers
More filters
Journal ArticleDOI
TL;DR: The Integrated Biosphere Simulator (IBIS) as mentioned in this paper is a terrestrial biosphere model that integrates a wide range of biophysical, physiological, and ecological processes in a single, physically consistent modeling framework.
Abstract: Here we present a new terrestrial biosphere model (the Integrated Biosphere Simulator - IBIS) which demonstrates how land surface biophysics, terrestrial carbon fluxes, and global vegetation dynamics can be represented in a single, physically consistent modeling framework. In order to integrate a wide range of biophysical, physiological, and ecological processes, the model is designed around a hierarchical, modular structure and uses a common state description throughout. First, a coupled simulation of the surface water, energy, and carbon fluxes is performed on hourly timesteps and is integrated over the year to estimate the annual water and carbon balance. Next, the annual carbon balance is used to predict changes in the leaf area index and biomass for each of nine plant functional types, which compete for light and water using different ecological strategies. The resulting patterns of annual evapotranspiration, runoff, and net primary productivity are in good agreement with observations. In addition, the model simulates patterns of vegetation dynamics that qualitatively agree with features of the natural process of secondary succession. Comparison of the model's inferred near-equilibrium vegetation categories with a potential natural vegetation map shows a fair degree of agreement. This integrated modeling framework provides a means of simulating both rapid biophysical processes and long-term ecosystem dynamics that can be directly incorporated within atmospheric models.

1,233 citations

Journal ArticleDOI
Bengt Edlén1
TL;DR: In this article, the authors presented an improved dispersion formula for standard air, (n − 1)s × 108 = 8342, where σ is the vacuum wave-number in μm-1.
Abstract: Present knowledge of the refractive index of air is reviewed. Regarding the absolute values there are as yet no definite indications that the standard adopted in 1953 on the basis of Barrell and Sears' measurements should be changed, but new experiments aiming at reducing the present uncertainty of about ± 5 × 10-8 would be desirable. Several recent investigations have contributed important new information on the dispersion of air, which has made it possible to derive an improved dispersion formula for standard air, (n − 1)s × 108 = 8342.13 + 2406030 (130 − σ2)-1 + 15997 (38.9 − σ2)−1, where σ is the vacuum wave-number in μm-1. The deviations from the 1953 formula are small and practically negligible in most spectroscopic work. An equation for the dependence of refractivity on temperature and pressure based on theoretical considerations has been derived. For the range of atmospheric conditions normally found in a laboratory the equation can be approximated by the formula (n − 1)tp = (n − 1)s × 0.00138823 p/(1 + 0.003671 t), with p in torr, t in °C, and (n − 1)s given by the dispersion formula for standard air. The effect of carbon dioxide and water vapour is discussed. From Erickson's dispersion data for water vapour, combined with Barrell and Sears' absolute measurements, one obtains the equation ntpf – ntp = −f (5.722 − 0.0457 σ2) × 10-8 for the difference in refractive index of moist air, containing f torr of water vapour, and dry air at equal temperature and total pressure. The equation is valid for visible radiations and normal atmospheric conditions.

1,229 citations

Journal ArticleDOI
18 Jan 1996-Nature
TL;DR: An alternative interpretation of why hydrophilic surfaces and macromolecules remain well separated in water is suggested, in which hydration forces are either attractive or oscillatory, and where repulsions have a totally different origin.
Abstract: The conventional explanation of why hydrophilic surfaces and macromolecules remain well separated in water is that they experience a monotonically repulsive hydration force owing to structuring of water molecules at the surfaces. A consideration of recent experimental and theoretical results suggests an alternative interpretation in which hydration forces are either attractive or oscillatory, and where repulsions have a totally different origin. Further experiments are needed to distinguish between these possibilities.

1,225 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed data from 4,182 incident cases of COVID-19 in which individuals self-reported their symptoms prospectively in the COVID Symptom Study app.
Abstract: Reports of long-lasting coronavirus disease 2019 (COVID-19) symptoms, the so-called 'long COVID', are rising but little is known about prevalence, risk factors or whether it is possible to predict a protracted course early in the disease. We analyzed data from 4,182 incident cases of COVID-19 in which individuals self-reported their symptoms prospectively in the COVID Symptom Study app1. A total of 558 (13.3%) participants reported symptoms lasting ≥28 days, 189 (4.5%) for ≥8 weeks and 95 (2.3%) for ≥12 weeks. Long COVID was characterized by symptoms of fatigue, headache, dyspnea and anosmia and was more likely with increasing age and body mass index and female sex. Experiencing more than five symptoms during the first week of illness was associated with long COVID (odds ratio = 3.53 (2.76-4.50)). A simple model to distinguish between short COVID and long COVID at 7 days (total sample size, n = 2,149) showed an area under the curve of the receiver operating characteristic curve of 76%, with replication in an independent sample of 2,472 individuals who were positive for severe acute respiratory syndrome coronavirus 2. This model could be used to identify individuals at risk of long COVID for trials of prevention or treatment and to plan education and rehabilitation services.

1,222 citations

Journal ArticleDOI
TL;DR: Eculizumab inhibited complement-mediated thrombotic microangiopathy and was associated with significant time-dependent improvement in renal function in patients with atypical hemolytic-uremic syndrome and was also associated with improvement in health-related quality of life.
Abstract: A b s t r ac t Background Atypical hemolytic–uremic syndrome is a genetic, life-threatening, chronic disease of complement-mediated thrombotic microangiopathy. Plasma exchange or infusion may transiently maintain normal levels of hematologic measures but does not treat the underlying systemic disease. Methods We conducted two prospective phase 2 trials in which patients with atypical hemo lytic–uremic syndrome who were 12 years of age or older received eculizumab for 26 weeks and during long-term extension phases. Patients with low platelet counts and renal damage (in trial 1) and those with renal damage but no decrease in the platelet count of more than 25% for at least 8 weeks during plasma exchange or infu sion (in trial 2) were recruited. The primary end points included a change in the platelet count (in trial 1) and thrombotic microangiopathy event–free status (no de crease in the platelet count of >25%, no plasma exchange or infusion, and no initia tion of dialysis) (in trial 2). Results A total of 37 patients (17 in trial 1 and 20 in trial 2) received eculizumab for a median of 64 and 62 weeks, respectively. Eculizumab resulted in increases in the platelet count; in trial 1, the mean increase in the count from baseline to week 26 was 73×10 9 per liter (P<0.001). In trial 2, 80% of the patients had thrombotic microangiopathy event–free status. Eculizumab was associated with significant improvement in all secondary end points, with continuous, time-dependent increases in the estimated glomerular filtration rate (GFR). In trial 1, dialysis was discontinued in 4 of 5 patients. Earlier intervention with eculiz umab was associated with significantly greater improvement in the estimated GFR. Eculizumab was also associated with improvement in healthrelated quality of life. No cumulative toxicity of therapy or serious infection-related adverse events, including meningococcal infections, were observed through the exten

1,219 citations


Authors

Showing all 42777 results

NameH-indexPapersCitations
Yi Chen2174342293080
Fred H. Gage216967185732
Kari Stefansson206794174819
Mark I. McCarthy2001028187898
Ruedi Aebersold182879141881
Jie Zhang1784857221720
Feng Zhang1721278181865
Martin G. Larson171620117708
Michael Snyder169840130225
Unnur Thorsteinsdottir167444121009
Anders Björklund16576984268
Carl W. Cotman165809105323
Dennis R. Burton16468390959
Jaakko Kaprio1631532126320
Panos Deloukas162410154018
Network Information
Related Institutions (5)
Katholieke Universiteit Leuven
176.5K papers, 6.2M citations

93% related

McGill University
162.5K papers, 6.9M citations

93% related

Utrecht University
139.3K papers, 6.2M citations

93% related

Imperial College London
209.1K papers, 9.3M citations

93% related

University of British Columbia
209.6K papers, 9.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023246
2022698
20216,295
20206,032
20195,584
20185,249