scispace - formally typeset
Search or ask a question
Institution

Maastricht University

EducationMaastricht, Limburg, Netherlands
About: Maastricht University is a education organization based out in Maastricht, Limburg, Netherlands. It is known for research contribution in the topics: Population & Health care. The organization has 19263 authors who have published 53291 publications receiving 2266866 citations. The organization is also known as: Universiteit Maastricht & UM.


Papers
More filters
Journal ArticleDOI
TL;DR: CT and MRI demonstrate an equally poor performance in the detection of lymph node metastases from prostate cancer and will misrepresent the patient's true status regarding nodal metastases, and thus misdirect the therapeutic strategies offered to the patient.

794 citations

Journal ArticleDOI
TL;DR: Optimal searches in systematic reviews should search at least Embase, MEDLINE, Web of Science, and Google Scholar as a minimum requirement to guarantee adequate and efficient coverage.
Abstract: Within systematic reviews, when searching for relevant references, it is advisable to use multiple databases. However, searching databases is laborious and time-consuming, as syntax of search strategies are database specific. We aimed to determine the optimal combination of databases needed to conduct efficient searches in systematic reviews and whether the current practice in published reviews is appropriate. While previous studies determined the coverage of databases, we analyzed the actual retrieval from the original searches for systematic reviews. Since May 2013, the first author prospectively recorded results from systematic review searches that he performed at his institution. PubMed was used to identify systematic reviews published using our search strategy results. For each published systematic review, we extracted the references of the included studies. Using the prospectively recorded results and the studies included in the publications, we calculated recall, precision, and number needed to read for single databases and databases in combination. We assessed the frequency at which databases and combinations would achieve varying levels of recall (i.e., 95%). For a sample of 200 recently published systematic reviews, we calculated how many had used enough databases to ensure 95% recall. A total of 58 published systematic reviews were included, totaling 1746 relevant references identified by our database searches, while 84 included references had been retrieved by other search methods. Sixteen percent of the included references (291 articles) were only found in a single database; Embase produced the most unique references (n = 132). The combination of Embase, MEDLINE, Web of Science Core Collection, and Google Scholar performed best, achieving an overall recall of 98.3 and 100% recall in 72% of systematic reviews. We estimate that 60% of published systematic reviews do not retrieve 95% of all available relevant references as many fail to search important databases. Other specialized databases, such as CINAHL or PsycINFO, add unique references to some reviews where the topic of the review is related to the focus of the database. Optimal searches in systematic reviews should search at least Embase, MEDLINE, Web of Science, and Google Scholar as a minimum requirement to guarantee adequate and efficient coverage.

791 citations

Journal ArticleDOI
TL;DR: Accumulation of USPIOs in macrophages in predominantly ruptured and rupture-prone human atherosclerotic lesions caused signal decreases in the in vivo MR images.
Abstract: Background— One of the features of high-risk atherosclerotic plaques is a preponderance of macrophages. Experimental studies with hyperlipidemic rabbits have shown that ultrasmall superparamagnetic particles of iron oxide (USPIOs) accumulate in plaques with a high macrophage content and that this induces magnetic resonance (MR) signal changes. The purpose of our study was to investigate whether USPIO-enhanced MRI can also be used for in vivo detection of macrophages in human plaques. Methods and Results— MRI was performed on 11 symptomatic patients scheduled for carotid endarterectomy before and 24 (n=11) and 72 (n=5) hours after administration of USPIOs (Sinerem) at a dose of 2.6 mg Fe/kg. Histological and electron microscopical analyses of the plaques showed USPIOs primarily in macrophages within the plaques in 10 of 11 patients. Histological analysis showed USPIOs in 27 of 36 (75%) of the ruptured and rupture-prone lesions and 1 of 14 (7%) of the stable lesions. Of the patients with USPIO uptake, signa...

790 citations

Journal ArticleDOI
TL;DR: The guidelines for the use of oral nutritional supplements (ONS) and tube feeding (TF) in cancer patients were developed by an interdisciplinary expert group in accordance with officially accepted standards as discussed by the authors.

790 citations

Journal ArticleDOI
TL;DR: It is concluded that the most likely mechanism for the reduction in fat oxidation during high‐intensity exercise is a downregulation of carnitine palmitoyltransferase I, either by this marked decline in free carnitines availability or by a decrease in intracellular pH.
Abstract: 1. Contemporary stable isotope methodology was applied in combination with muscle biopsy sampling to accurately quantify substrate utilisation and study the regulation of muscle fuel selection during exercise. 2. Eight cyclists were studied at rest and during three consecutive 30 min stages of exercise at intensities of 40, 55 and 75 % maximal workload (W(max)). A continuous infusion of [U-(13)C]palmitate and [6,6-(2)H(2)]glucose was administered to determine plasma free fatty acid (FFA) oxidation and estimate plasma glucose oxidation, respectively. Biopsy samples were collected before and after each exercise stage. 3. Muscle glycogen and plasma glucose oxidation rates increased with every increment in exercise intensity. Whole-body fat oxidation increased to 32 +/- 2 kJ min(-1) at 55 % W(max), but declined at 75 % W(max) (19 +/- 2 kJ min(-1)). This decline involved a decrease in the oxidation rate of both plasma FFA and triacylglycerol fat sources (sum of intramuscular plus lipoprotein-derived triacylglycerol), and was accompanied by increases in muscle pyruvate dehydrogenase complex activation and acetylation of the carnitine pool, resulting in a decline in muscle free carnitine concentration. 4. We conclude that the most likely mechanism for the reduction in fat oxidation during high-intensity exercise is a downregulation of carnitine palmitoyltransferase I, either by this marked decline in free carnitine availability or by a decrease in intracellular pH.

789 citations


Authors

Showing all 19492 results

NameH-indexPapersCitations
Edward Giovannucci2061671179875
Julie E. Buring186950132967
Aaron R. Folsom1811118134044
John J.V. McMurray1781389184502
Alvaro Pascual-Leone16596998251
Lex M. Bouter158767103034
David T. Felson153861133514
Walter Paulus14980986252
Michael Conlon O'Donovan142736118857
Randy L. Buckner141346110354
Philip Scheltens1401175107312
Anne Tjønneland139134591556
Ewout W. Steyerberg139122684896
James G. Herman138410120628
Andrew Steptoe137100373431
Network Information
Related Institutions (5)
University of Pittsburgh
201K papers, 9.6M citations

94% related

University of Amsterdam
140.8K papers, 5.9M citations

93% related

Utrecht University
139.3K papers, 6.2M citations

93% related

Emory University
122.4K papers, 6M citations

93% related

University of Pennsylvania
257.6K papers, 14.1M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023107
2022344
20214,522
20203,881
20193,367
20183,019