scispace - formally typeset
Search or ask a question
Institution

Macquarie University

EducationSydney, New South Wales, Australia
About: Macquarie University is a education organization based out in Sydney, New South Wales, Australia. It is known for research contribution in the topics: Population & Context (language use). The organization has 14075 authors who have published 47673 publications receiving 1416184 citations. The organization is also known as: Macquarie uni.


Papers
More filters
Journal ArticleDOI
Monika Böhm1, Ben Collen1, Jonathan E. M. Baillie1, Philip Bowles2  +240 moreInstitutions (95)
TL;DR: The results provide the first analysis of the global conservation status and distribution patterns of reptiles and the threats affecting them, highlighting conservation priorities and knowledge gaps which need to be addressed urgently to ensure the continued survival of the world’s reptiles.

720 citations

Journal ArticleDOI
TL;DR: To quantify climatic influences on key leaf traits and relationships at the global scale provides insight into how plants have adapted to different environmental pressures, and will lead to better calibration of future vegetation‐climate models.
Abstract: Aim Our aim was to quantify climatic influences on key leaf traits and relationships at the global scale. This knowledge provides insight into how plants have adapted to different environmental pressures, and will lead to better calibration of future vegetation‐climate models. Location The data set represents vegetation from 175 sites around the world. Methods For more than 2500 vascular plant species, we compiled data on leaf mass per area (LMA), leaf life span (LL), nitrogen concentration (N mass ) and photosynthetic capacity (A mass ). Site climate was described with several standard indices. Correlation and regression analyses were used for quantifying relationships between single leaf traits and climate. Standardized major axis (SMA) analyses were used for assessing the effect of climate on bivariate relationships between leaf traits. Principal components analysis (PCA) was used to summarize multidimensional trait variation. Results At hotter, drier and higher irradiance sites, (1) mean LMA and leaf N per area were higher; (2) average LL was shorter at a given LMA, or the increase in LL was less for a given increase in LMA (LL‐LMA relationships became less positive); and (3) A mass was lower at a given N mass , or the increase in A mass was less for a given increase in N mass . Considering all traits simultaneously, 18% of variation along the principal multivariate trait axis was explained by climate.

711 citations

Journal ArticleDOI
TL;DR: The notion of self-branding has drawn myriad academic responses over the last decade as mentioned in this paper, and has been criticised by some academic researchers, such as the authors of this article.
Abstract: The notion of self-branding has drawn myriad academic responses over the last decade. First popularised in a provocative piece published in Fast Company, self-branding has been criticised by some o...

708 citations

Journal ArticleDOI
TL;DR: A review of the development of land surface models for climate models from the early, very simple models through to recent efforts, which include a coupling of biophysical processes to represent carbon exchange, can be found in this paper.
Abstract: The land surface is a key component of climate models. It controls the partitioning of available energy at the surface between sensible and latent heat, and it controls the partitioning of available water between evaporation and runoff. The land surface is also the location of the terrestrial carbon sink. Evidence is increasing that the influence of the land surface is significant on climate and that changes in the land surface can influence regional- to global-scale climate on time scales from days to millennia. Further, there is now a suggestion that the terrestrial carbon sink may decrease as global temperatures increase as a consequence of rising CO2 levels. This paper provides the theoretical background that explains why the land surface should play a central role in climate. It also provides evidence, sourced from climate model experiments, that the land surface is of central importance. This paper then reviews the development of land surface models designed for climate models from the early, very simple models through to recent efforts, which include a coupling of biophysical processes to represent carbon exchange. It is pointed out that significant problems remain to be addressed, including the difficulties in parameterizing hydrological processes, root processes, sub-grid-scale heterogeneity and biogeochemical cycles. It is argued that continued development of land surface models requires more multidisciplinary efforts by scientists with a wide range of skills. However, it is also argued that the framework is now in place within the international community to build and maintain the latest generation of land surface models. Further, there should be considerable optimism that consolidating the recent rapid advances in land surface modelling will enhance our capability to simulate the impacts of land-cover change and the impacts of increasing CO2 on the global and regional environment. Copyright  2003 Royal Meteorological Society.

707 citations

Journal ArticleDOI
TL;DR: A classification of translocations based on specific genetic goals for both threatened species and ecological restoration is provided, separating targets based on ‘genetic rescue’ of current population fitness from those focused on maintaining adaptive potential.
Abstract: Translocations are being increasingly proposed as a way of conserving biodiversity, particularly in the management of threatened and keystone species, with the aims of maintaining biodiversity and ecosystem function under the combined pressures of habitat fragmentation and climate change. Evolutionary genetic considerations should be an important part of translocation strategies, but there is often confusion about concepts and goals. Here, we provide a classification of translocations based on specific genetic goals for both threatened species and ecological restoration, separating targets based on ‘genetic rescue’ of current population fitness from those focused on maintaining adaptive potential. We then provide a framework for assessing the genetic benefits and risks associated with translocations and provide guidelines for managers focused on conserving biodiversity and evolutionary processes. Case studies are developed to illustrate the framework.

703 citations


Authors

Showing all 14346 results

NameH-indexPapersCitations
Yang Yang1712644153049
Peter B. Reich159790110377
Nicholas J. Talley158157190197
John R. Hodges14981282709
Thomas J. Smith1401775113919
Andrew G. Clark140823123333
Joss Bland-Hawthorn136111477593
John F. Thompson132142095894
Xin Wang121150364930
William L. Griffin11786261494
Richard Shine115109656544
Ian T. Paulsen11235469460
Jianjun Liu112104071032
Douglas R. MacFarlane11086454236
Richard A. Bryant10976943971
Network Information
Related Institutions (5)
Australian National University
109.2K papers, 4.3M citations

96% related

University of Queensland
155.7K papers, 5.7M citations

96% related

University of Sydney
187.3K papers, 6.1M citations

95% related

University of Melbourne
174.8K papers, 6.3M citations

95% related

University of New South Wales
153.6K papers, 4.8M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023110
2022463
20214,106
20204,009
20193,549
20183,119