scispace - formally typeset
Search or ask a question
Institution

Macquarie University

EducationSydney, New South Wales, Australia
About: Macquarie University is a education organization based out in Sydney, New South Wales, Australia. It is known for research contribution in the topics: Population & Laser. The organization has 14075 authors who have published 47673 publications receiving 1416184 citations. The organization is also known as: Macquarie uni.
Topics: Population, Laser, Galaxy, Anxiety, Mantle (geology)


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors evaluate the global age distribution of granitoid magmatism and juvenile continental crust production with U/Pb isotopic ages from igneous and detrital zircons, and with Nd isotopic data.

572 citations

Journal ArticleDOI
TL;DR: In this article, the authors present an up-to-date comparative summary of the performance parameters of the major energy storage options, including efficiency, energy capacity, energy density, run time, capital investment costs, response time, lifetime in years and cycles, self discharge and maturity of each energy storage option.
Abstract: Renewable energy technologies are expected to take the leading role in the forthcoming energy generation portfolio in order to achieve sustainable energy generation. The major constraints for increasing penetration of renewable energy sources is their availability and intermittency, which can be addressed through energy storage when available and energy use when needed. This work reviews the energy storage technologies and gives an up to date comparative summary of the performance parameters of the major energy storage options. The parameters compared here include efficiency, energy capacity, energy density, run time, capital investment costs, response time, lifetime in years and cycles, self discharge and maturity of each energy storage option. The choice of storage system will depend on individual requirements, and may even incorporate more than one energy storage system to increase the energy storage capacity and improve energy security.

568 citations

Journal ArticleDOI
TL;DR: The composition of the subcontinental lithospheric mantle (SCLM) is broadly related to the tectonothermal age of the overlying crust, suggesting a secular change in SCLM-forming processes.
Abstract: The composition of the subcontinental lithospheric mantle (SCLM) is broadly related to the tectonothermal age of the overlying crust, suggesting a secular change in SCLM-forming processes. Most estimated compositions of Archean SCLM, based on well-studied suites of xenoliths and xenocrysts, are depleted garnet lherzolites with high orthopyroxene/olivine. However, these compositions make it difficult to account for the high shear-wave velocities measured in the cores of large cratons, and predict deeper geoid anomalies and higher elevations than are observed in most cratons. Global and regional seismic tomography indicates that most cratonic xenolith suites represent material from the lower-velocity margins of lithospheric blocks. This implies that previous compositional estimates are strongly biased toward metasomatized material. We suggest that most Archean SCLM originally consisted of highly depleted dunites/ harzburgites, similar to the Archean orogenic massifs of western Norway. Incorporation of such rocks in the cold upper parts of the cratonic SCLM satisfies the seismic and gravity data, suggesting that large volumes of these rocks are preserved in the cores of cratons, but are poorly sampled by volcanic rocks. The roots of most Proterozoic shields probably consist of refertilized Archean SCLM; the juvenile SCLM beneath Proterozoic and Phanerozoic mobile belts reflects only moderate depletion of Primitive Mantle compositions. Rather than a gradual evolution in SCLM-forming processes, we suggest a sharp dichotomy between Archean and younger tectonic regimes.The differences in buoyancy and viscosity between these two types of SCLM have played a major role in the construction, preservation and recycling of continental crust. If originally Archean SCLM is more widespread than currently recognized, models of crustal growth rates and recycling may need to be revised.

565 citations

Journal ArticleDOI
TL;DR: The results support the relationship between an overinvolved parenting style and anxiety but question the specificity of this relationship.

564 citations

Journal ArticleDOI
TL;DR: Ytterbium-doped silica fibers exhibit very broad absorption and emission bands, from /spl sim/800 nm to /spl sim/1064 nm for absorption and /spl S sim/970 nm to/spl sim s sim/1200 nm for emission as discussed by the authors.
Abstract: Ytterbium-doped silica fibers exhibit very broad absorption and emission bands, from /spl sim/800 nm to /spl sim/1064 nm for absorption and /spl sim/970 nm to /spl sim/1200 nm for emission. The simplicity of the level structure provides freedom from unwanted processes such as excited state absorption, multiphonon nonradiative decay, and concentration quenching. These fiber lasers therefore offer a very efficient and convenient means of wavelength conversion from a wide variety of pump lasers, including AlGaAs and InGaAs diodes and Nd:YAG lasers. Efficient operation with narrow linewidth at any wavelength in the emission range can be conveniently achieved using fiber gratings. A wide range of application for these sources can be anticipated. In this paper, the capabilities of this versatile source are reviewed. Analytical procedures and numerical data are presented to enable design choices to be made for the wide range of operating conditions. >

564 citations


Authors

Showing all 14346 results

NameH-indexPapersCitations
Yang Yang1712644153049
Peter B. Reich159790110377
Nicholas J. Talley158157190197
John R. Hodges14981282709
Thomas J. Smith1401775113919
Andrew G. Clark140823123333
Joss Bland-Hawthorn136111477593
John F. Thompson132142095894
Xin Wang121150364930
William L. Griffin11786261494
Richard Shine115109656544
Ian T. Paulsen11235469460
Jianjun Liu112104071032
Douglas R. MacFarlane11086454236
Richard A. Bryant10976943971
Network Information
Related Institutions (5)
Australian National University
109.2K papers, 4.3M citations

96% related

University of Queensland
155.7K papers, 5.7M citations

96% related

University of Sydney
187.3K papers, 6.1M citations

95% related

University of Melbourne
174.8K papers, 6.3M citations

95% related

University of New South Wales
153.6K papers, 4.8M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023110
2022463
20214,106
20204,009
20193,549
20183,119