scispace - formally typeset
Search or ask a question
Institution

Macquarie University

EducationSydney, New South Wales, Australia
About: Macquarie University is a education organization based out in Sydney, New South Wales, Australia. It is known for research contribution in the topics: Population & Laser. The organization has 14075 authors who have published 47673 publications receiving 1416184 citations. The organization is also known as: Macquarie uni.
Topics: Population, Laser, Galaxy, Anxiety, Mantle (geology)


Papers
More filters
Journal ArticleDOI
TL;DR: In the stochastic computer projections, 12 diploid lethal equivalents of inbreeding depression (with purging) decreased median times to extinction by an average of 37%.

530 citations

Journal ArticleDOI
TL;DR: Surprisingly, equalization of family sizes reduces the rate of genetic adaptation, but not the deleterious impacts upon reintroduced populations, as predicted by quantitative genetic theory.
Abstract: As wild environments are often inhospitable, many species have to be captive-bred to save them from extinction. In captivity, species adapt genetically to the captive environment and these genetic adaptations are overwhelmingly deleterious when populations are returned to wild environments. I review empirical evidence on (i) the genetic basis of adaptive changes in captivity, (ii) factors affecting the extent of genetic adaptation to captivity, and (iii) means for minimizing its deleterious impacts. Genetic adaptation to captivity is primarily due to rare alleles that in the wild were deleterious and partially recessive. The extent of adaptation to captivity depends upon selection intensity, genetic diversity, effective population size and number of generation in captivity, as predicted by quantitative genetic theory. Minimizing generations in captivity provides a highly effective means for minimizing genetic adaptation to captivity, but is not a practical option for most animal species. Population fragmentation and crossing replicate captive populations provide practical means for minimizing the deleterious effects of genetic adaptation to captivity upon populations reintroduced into the wild. Surprisingly, equalization of family sizes reduces the rate of genetic adaptation, but not the deleterious impacts upon reintroduced populations. Genetic adaptation to captivity is expected to have major effects on reintroduction success for species that have spent many generations in captivity. This issue deserves a much higher priority than it is currently receiving.

528 citations

Journal ArticleDOI
TL;DR: It is argued that human activities are exacerbating the problem of resistance to antibiotics by increasing the tempo of LGT and bacterial evolution for many traits that are important to humans.
Abstract: Antibiotics were one of the great discoveries of the 20th century. However, resistance appeared even in the earliest years of the antibiotic era. Antibiotic resistance continues to become worse, despite the ever-increasing resources devoted to combat the problem. One of the most important factors in the development of resistance to antibiotics is the remarkable ability of bacteria to share genetic resources via Lateral Gene Transfer (LGT). LGT occurs on a global scale, such that in theory, any gene in any organism anywhere in the microbial biosphere might be mobilized and spread. With sufficiently strong selection, any gene may spread to a point where it establishes a global presence. From an antibiotic resistance perspective, this means that a resistance phenotype can appear in a diverse range of infections around the globe nearly simultaneously. We discuss the forces and agents that make this LGT possible and argue that the problem of resistance can ultimately only be managed by understanding the problem from a broad ecological and evolutionary perspective. We also argue that human activities are exacerbating the problem by increasing the tempo of LGT and bacterial evolution for many traits that are important to humans.

528 citations

Journal ArticleDOI
TL;DR: Results showed that nivolumab plus ipilimumab continued to be superior to sunitinib in terms of overall survival and characterisation of response, and safety after extended follow-up in intermediate-risk or poor-risk patients.
Abstract: Summary Background In the ongoing phase 3 CheckMate 214 trial, nivolumab plus ipilimumab showed superior efficacy over sunitinib in patients with previously untreated intermediate-risk or poor-risk advanced renal cell carcinoma, with a manageable safety profile. In this study, we aimed to assess efficacy and safety after extended follow-up to inform the long-term clinical benefit of nivolumab plus ipilimumab versus sunitinib in this setting. Methods In the phase 3, randomised, controlled CheckMate 214 trial, patients aged 18 years and older with previously untreated, advanced, or metastatic histologically confirmed renal cell carcinoma with a clear-cell component were recruited from 175 hospitals and cancer centres in 28 countries. Patients were categorised by International Metastatic Renal Cell Carcinoma Database Consortium risk status into favourable-risk, intermediate-risk, and poor-risk subgroups and randomly assigned (1:1) to open-label nivolumab (3 mg/kg intravenously) plus ipilimumab (1 mg/kg intravenously) every 3 weeks for four doses, followed by nivolumab (3 mg/kg intravenously) every 2 weeks; or sunitinib (50 mg orally) once daily for 4 weeks (6-week cycle). Randomisation was done through an interactive voice response system, with a block size of four and stratified by risk status and geographical region. The co-primary endpoints for the trial were overall survival, progression-free survival per independent radiology review committee (IRRC), and objective responses per IRRC in intermediate-risk or poor-risk patients. Secondary endpoints were overall survival, progression-free survival per IRRC, and objective responses per IRRC in the intention-to-treat population, and adverse events in all treated patients. In this Article, we report overall survival, investigator-assessed progression-free survival, investigator-assessed objective response, characterisation of response, and safety after extended follow-up. Efficacy outcomes were assessed in all randomly assigned patients; safety was assessed in all treated patients. This study is registered with ClinicalTrials.gov, number NCT02231749, and is ongoing but now closed to recruitment. Findings Between Oct 16, 2014, and Feb 23, 2016, of 1390 patients screened, 1096 (79%) eligible patients were randomly assigned to nivolumab plus ipilimumab or sunitinib (550 vs 546 in the intention-to-treat population; 425 vs 422 intermediate-risk or poor-risk patients, and 125 vs 124 favourable-risk patients). With extended follow-up (median follow-up 32·4 months [IQR 13·4–36·3]), in intermediate-risk or poor-risk patients, results for the three co-primary efficacy endpoints showed that nivolumab plus ipilimumab continued to be superior to sunitinib in terms of overall survival (median not reached [95% CI 35·6–not estimable] vs 26·6 months [22·1–33·4]; hazard ratio [HR] 0·66 [95% CI 0·54–0·80], p Interpretation The results suggest that the superior efficacy of nivolumab plus ipilimumab over sunitinib was maintained in intermediate-risk or poor-risk and intention-to-treat patients with extended follow-up, and show the long-term benefits of nivolumab plus ipilimumab in patients with previously untreated advanced renal cell carcinoma across all risk categories. Funding Bristol-Myers Squibb and ONO Pharmaceutical.

527 citations

Journal ArticleDOI
TL;DR: The LA-ICP-MS U-(Th-)Pb geochronology international community has defined new standards for the determination of U-(th)-Pb ages as discussed by the authors.
Abstract: The LA-ICP-MS U-(Th-)Pb geochronology international community has defined new standards for the determination of U-(Th-)Pb ages. A new workflow defines the appropriate propagation of uncertainties for these data, identifying random and systematic components. Only data with uncertainties relating to random error should be used in weighted mean calculations of population ages; uncertainty components for systematic errors are propagated after this stage, preventing their erroneous reduction. Following this improved uncertainty propagation protocol, data can be compared at different uncertainty levels to better resolve age differences. New reference values for commonly used zircon, monazite and titanite reference materials are defined (based on ID-TIMS) after removing corrections for common lead and the effects of excess 230Th. These values more accurately reflect the material sampled during the determination of calibration factors by LA-ICP-MS analysis. Recommendations are made to graphically represent data only with uncertainty ellipses at 2s and to submit or cite validation data with sample data when submitting data for publication. New data-reporting standards are defined to help improve the peer-review process. With these improvements, LA-ICP-MS U-(Th-)Pb data can be considered more robust, accurate, better documented and quantified, directly contributing to their improved scientific interpretation.

526 citations


Authors

Showing all 14346 results

NameH-indexPapersCitations
Yang Yang1712644153049
Peter B. Reich159790110377
Nicholas J. Talley158157190197
John R. Hodges14981282709
Thomas J. Smith1401775113919
Andrew G. Clark140823123333
Joss Bland-Hawthorn136111477593
John F. Thompson132142095894
Xin Wang121150364930
William L. Griffin11786261494
Richard Shine115109656544
Ian T. Paulsen11235469460
Jianjun Liu112104071032
Douglas R. MacFarlane11086454236
Richard A. Bryant10976943971
Network Information
Related Institutions (5)
Australian National University
109.2K papers, 4.3M citations

96% related

University of Queensland
155.7K papers, 5.7M citations

96% related

University of Sydney
187.3K papers, 6.1M citations

95% related

University of Melbourne
174.8K papers, 6.3M citations

95% related

University of New South Wales
153.6K papers, 4.8M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023110
2022463
20214,106
20204,009
20193,549
20183,119