Institution
Manchester Metropolitan University
Education•Manchester, Manchester, United Kingdom•
About: Manchester Metropolitan University is a(n) education organization based out in Manchester, Manchester, United Kingdom. It is known for research contribution in the topic(s): Population & Context (language use). The organization has 5435 authors who have published 16202 publication(s) receiving 442561 citation(s). The organization is also known as: Manchester Polytechnic & MMU.
Papers published on a yearly basis
Papers
More filters
Book•
01 Jan 1980TL;DR: In this article, the context of educational research, planning educational research and the styles of education research are discussed, along with strategies and instruments for data collection and research for data analysis.
Abstract: Part One: The Context Of Educational Research Part Two: Planning Educational Research Part Three: Styles Of Educational Research Part Four: Strategies And Instruments For Data Collection And Researching Part Five: Data Analysis
20,255 citations
TL;DR: Thirteen recommendations are made to enable the objective selection of an error assessment technique for ecological presence/absence models and a new approach to estimating prediction error, which is based on the spatial characteristics of the errors, is proposed.
Abstract: Predicting the distribution of endangered species from habitat data is frequently perceived to be a useful technique. Models that predict the presence or absence of a species are normally judged by the number of prediction errors. These may be of two types: false positives and false negatives. Many of the prediction errors can be traced to ecological processes such as unsaturated habitat and species interactions. Consequently, if prediction errors are not placed in an ecological context the results of the model may be misleading. The simplest, and most widely used, measure of prediction accuracy is the number of correctly classified cases. There are other measures of prediction success that may be more appropriate. Strategies for assessing the causes and costs of these errors are discussed. A range of techniques for measuring error in presence/absence models, including some that are seldom used by ecologists (e.g. ROC plots and cost matrices), are described. A new approach to estimating prediction error, which is based on the spatial characteristics of the errors, is proposed. Thirteen recommendations are made to enable the objective selection of an error assessment technique for ecological presence/absence models.
5,481 citations
01 Jan 2007
3,304 citations
Potsdam Institute for Climate Impact Research1, University of Melbourne2, Pacific Northwest National Laboratory3, National Oceanic and Atmospheric Administration4, National Institute for Environmental Studies5, National Center for Atmospheric Research6, University of Shiga Prefecture7, Manchester Metropolitan University8, International Institute for Applied Systems Analysis9, Netherlands Environmental Assessment Agency10, Utrecht University11
TL;DR: In this article, the greenhouse gas concentrations for the Representative Concentration Pathways (RCPs) and their extensions beyond 2100, the Extended ConcentrationPathways (ECPs), are presented.
Abstract: We present the greenhouse gas concentrations for the Representative Concentration Pathways (RCPs) and their extensions beyond 2100, the Extended Concentration Pathways (ECPs). These projections include all major anthropogenic greenhouse gases and are a result of a multi-year effort to produce new scenarios for climate change research. We combine a suite of atmospheric concentration observations and emissions estimates for greenhouse gases (GHGs) through the historical period (1750-2005) with harmonized emissions projected by four different Integrated Assessment Models for 2005-2100. As concentrations are somewhat dependent on the future climate itself (due to climate feedbacks in the carbon and other gas cycles), we emulate median response characteristics of models assessed in the IPCC Fourth Assessment Report using the reduced-complexity carbon cycle climate model MAGICC6. Projected 'best-estimate' global-mean surface temperature increases (using inter alia a climate sensitivity of 3°C) range from 1.5°C by 2100 for the lowest of the four RCPs, called both RCP3-PD and RCP2.6, to 4.5°C for the highest one, RCP8.5, relative to pre-industrial levels. Beyond 2100, we present the ECPs that are simple extensions of the RCPs, based on the assumption of either smoothly stabilizing concentrations or constant emissions: For example,
2,689 citations
TL;DR: A comprehensive probabilistic analysis aimed at quantifying GHG emission budgets for the 2000–50 period that would limit warming throughout the twenty-first century to below 2 °C, based on a combination of published distributions of climate system properties and observational constraints is provided.
Abstract: More than 100 countries have adopted a global warming limit of 2 degrees C or below (relative to pre-industrial levels) as a guiding principle for mitigation efforts to reduce climate change risks, impacts and damages. However, the greenhouse gas (GHG) emissions corresponding to a specified maximum warming are poorly known owing to uncertainties in the carbon cycle and the climate response. Here we provide a comprehensive probabilistic analysis aimed at quantifying GHG emission budgets for the 2000-50 period that would limit warming throughout the twenty-first century to below 2 degrees C, based on a combination of published distributions of climate system properties and observational constraints. We show that, for the chosen class of emission scenarios, both cumulative emissions up to 2050 and emission levels in 2050 are robust indicators of the probability that twenty-first century warming will not exceed 2 degrees C relative to pre-industrial temperatures. Limiting cumulative CO(2) emissions over 2000-50 to 1,000 Gt CO(2) yields a 25% probability of warming exceeding 2 degrees C-and a limit of 1,440 Gt CO(2) yields a 50% probability-given a representative estimate of the distribution of climate system properties. As known 2000-06 CO(2) emissions were approximately 234 Gt CO(2), less than half the proven economically recoverable oil, gas and coal reserves can still be emitted up to 2050 to achieve such a goal. Recent G8 Communiques envisage halved global GHG emissions by 2050, for which we estimate a 12-45% probability of exceeding 2 degrees C-assuming 1990 as emission base year and a range of published climate sensitivity distributions. Emissions levels in 2020 are a less robust indicator, but for the scenarios considered, the probability of exceeding 2 degrees C rises to 53-87% if global GHG emissions are still more than 25% above 2000 levels in 2020.
2,202 citations
Authors
Showing all 5435 results
Name | H-index | Papers | Citations |
---|---|---|---|
David T. Felson | 153 | 861 | 133514 |
João Carvalho | 126 | 1278 | 77017 |
Andrew M. Jones | 103 | 764 | 37253 |
Michael C. Carroll | 100 | 399 | 34818 |
Mark Conner | 98 | 379 | 47672 |
Richard P. Bentall | 94 | 431 | 30580 |
Michael Wooldridge | 87 | 543 | 50675 |
Lina Badimon | 86 | 682 | 35774 |
Ian Parker | 85 | 432 | 28166 |
Kamaruzzaman Sopian | 84 | 989 | 25293 |
Keith Davids | 84 | 604 | 25038 |
Richard Baker | 83 | 514 | 22970 |
Joan Montaner | 80 | 489 | 22413 |
Stuart Robert Batten | 78 | 325 | 24097 |
Craig E. Banks | 77 | 569 | 27520 |