scispace - formally typeset
Search or ask a question
Institution

Manipal University

EducationManipal, Karnataka, India
About: Manipal University is a education organization based out in Manipal, Karnataka, India. It is known for research contribution in the topics: Population & Medicine. The organization has 9525 authors who have published 11207 publications receiving 110687 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This effort was the first total profiling of the synovial fluid proteome in RA that led to identification of 956 proteins, illustrating the complex and dynamic nature of RA in which multiple pathways seems to be participating actively.
Abstract: Rheumatoid arthritis (RA) is a chronic autoinflammatory disorder that affects small joints. Despite intense efforts, there are currently no definitive markers for early diagnosis of RA and for monitoring the progression of this disease, though some of the markers like anti CCP antibodies and anti vimentin antibodies are promising. We sought to catalogue the proteins present in the synovial fluid of patients with RA. It was done with the aim of identifying newer biomarkers, if any, that might prove promising in future. To enrich the low abundance proteins, we undertook two approaches—multiple affinity removal system (MARS14) to deplete some of the most abundant proteins and lectin affinity chromatography for enrichment of glycoproteins. The peptides were analyzed by LC–MS/MS on a high resolution Fourier transform mass spectrometer. This effort was the first total profiling of the synovial fluid proteome in RA that led to identification of 956 proteins. From the list, we identified a number of functionally significant proteins including vascular cell adhesion molecule-1, S100 proteins, AXL receptor protein tyrosine kinase, macrophage colony stimulating factor (M-CSF), programmed cell death ligand 2 (PDCD1LG2), TNF receptor 2, (TNFRSF1B) and many novel proteins including hyaluronan-binding protein 2, semaphorin 4A (SEMA4D) and osteoclast stimulating factor 1. Overall, our findings illustrate the complex and dynamic nature of RA in which multiple pathways seems to be participating actively. The use of high resolution mass spectrometry thus, enabled identification of proteins which might be critical to the progression of RA.

47 citations

01 Jan 2006
TL;DR: Although knowledge scores in the test group of patients improved, compared with those of the control group, as determined by the Man–Whitney test, this improved knowledge did not lead to appropriate attitudes or practices.
Abstract: Background: Patient involvement forms the cornerstone of the management of chronic diseases such as diabetes mellitus. Objective: We evaluated the results of counseling selected hospitalized diabetic patients about their medications, disease, and lifestyle modifications in terms of knowledge, attitude, and practice outcomes. Methods: Diabetic patients were counseled via regular bedside meetings, via the distribution of leaflets throughout their hospital stay, and during regular follow-up visits for two months after discharge from the hospital. Results: Forty-six patients (19 in the test group and 27 controls) completed the study. In the test group, 12 patients (63.1%) were counseled in Kannada, the local language of the study site. A total of 30 to 60 minutes was spent in counseling 63.1% of the patients. Insulin was explained to 13 patients (68.4%); among the oral antidiabetic agents, metformin was discussed with 10 (52.6%) of the 19 patients. Although knowledge scores in the test group of patients improved, compared with those of the control group, as determined by the Man–Whitney test (P < .05), we did not observe significant improvement in attitude or practice outcomes. Conclusion: Patient counseling by a clinical pharmacist improved knowledge scores, but this improved knowledge did not lead to appropriate attitudes or practices.

47 citations

Journal ArticleDOI
TL;DR: In this paper, the role played by mitochondria and ROS in sperm and oocyte function and the close, biunivocal relationships between mitochondrial damage and ROS generation during cryopreservation of gametes and gonadal tissues in different species.
Abstract: Mitochondria, fundamental organelles in cell metabolism, and ATP synthesis are responsible for generating reactive oxygen species (ROS), calcium homeostasis, and cell death. Mitochondria produce most ROS, and when levels exceed the antioxidant defenses, oxidative stress (OS) is generated. These changes may eventually impair the electron transport chain, resulting in decreased ATP synthesis, increased ROS production, altered mitochondrial membrane permeability, and disruption of calcium homeostasis. Mitochondria play a key role in the gamete competence to facilitate normal embryo development. However, iatrogenic factors in assisted reproductive technologies (ART) may affect their functional competence, leading to an abnormal reproductive outcome. Cryopreservation, a fundamental technology in ART, may compromise mitochondrial function leading to elevated intracellular OS that decreases sperm and oocytes’ competence and the dynamics of fertilization and embryo development. This article aims to review the role played by mitochondria and ROS in sperm and oocyte function and the close, biunivocal relationships between mitochondrial damage and ROS generation during cryopreservation of gametes and gonadal tissues in different species. Based on current literature, we propose tentative hypothesis of mechanisms involved in cryopreservation-associated mitochondrial dysfunction in gametes, and discuss the role played by antioxidants and other agents to retain the competence of cryopreserved reproductive cells and tissues.

47 citations

Journal ArticleDOI
TL;DR: The recurrent neural network outperformed both, the back propagation neural network and central composite design and particle swarm optimization and genetic algorithm outperformed desirability function approach as the former carried out search in many directions at multi dimensional space, simultaneously.

47 citations

Journal ArticleDOI
TL;DR: Myh3 mouse alleles reveal that MyHC-embryonic is crucial for skeletal muscle development and adult Myh3 null mice exhibit scoliosis, a phenotype seen in congenital contracture syndromes.
Abstract: Myosin heavy chain-embryonic (MyHC-emb) is a skeletal muscle-specific contractile protein expressed during muscle development. Mutations in MYH3, the gene encoding MyHC-emb, lead to Freeman-Sheldon and Sheldon-Hall congenital contracture syndromes. Here, we characterize the role of MyHC-emb during mammalian development using targeted mouse alleles. Germline loss of MyHC-emb leads to neonatal and postnatal alterations in muscle fiber size, fiber number, fiber type and misregulation of genes involved in muscle differentiation. Deletion of Myh3 during embryonic myogenesis leads to the depletion of the myogenic progenitor cell pool and an increase in the myoblast pool, whereas fetal myogenesis-specific deletion of Myh3 causes the depletion of both myogenic progenitor and myoblast pools. We reveal that the non-cell-autonomous effect of MyHC-emb on myogenic progenitors and myoblasts is mediated by the fibroblast growth factor (FGF) signaling pathway, and exogenous FGF rescues the myogenic differentiation defects upon loss of MyHC-emb function in vitro Adult Myh3 null mice exhibit scoliosis, a characteristic phenotype exhibited by individuals with Freeman-Sheldon and Sheldon-Hall congenital contracture syndrome. Thus, we have identified MyHC-emb as a crucial myogenic regulator during development, performing dual cell-autonomous and non-cell-autonomous functions.This article has an associated 'The people behind the papers' interview.

47 citations


Authors

Showing all 9740 results

NameH-indexPapersCitations
John J.V. McMurray1781389184502
Ashok Kumar1515654164086
Zhanhu Guo12888653378
Vijay P. Singh106169955831
Michael Walsh10296342231
Akhilesh Pandey10052953741
Vivekanand Jha9495885734
Manuel Hidalgo9253841330
Madhukar Pai8952233349
Ravi Kumar8257137722
Vijay V. Kakkar6047017731
G. Münzenberg583369837
Abhishek Sharma524269715
Ramesh R. Bhonde492238397
Chandra P. Sharma4832512100
Network Information
Related Institutions (5)
Panjab University, Chandigarh
18.7K papers, 461K citations

89% related

King Saud University
57.9K papers, 1M citations

88% related

All India Institute of Medical Sciences
40.1K papers, 640.4K citations

88% related

University of Delhi
36.4K papers, 666.9K citations

88% related

King Abdulaziz University
44.9K papers, 1.1M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023102
2022280
20212,150
20201,821
20191,422
20181,083