scispace - formally typeset
Search or ask a question
Institution

Manipal University

EducationManipal, Karnataka, India
About: Manipal University is a education organization based out in Manipal, Karnataka, India. It is known for research contribution in the topics: Population & Health care. The organization has 9525 authors who have published 11207 publications receiving 110687 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors identified five families with Intellectual Disability (ID) from Iran, Pakistan, and India, with four different biallelic mutations in PIDD1, all disrupting the Death Domain (DD), through which PIDD 1 interacts with CRADD or RIP1.
Abstract: PIDD1 encodes p53-Induced Death Domain protein 1, which acts as a sensor surveilling centrosome numbers and p53 activity in mammalian cells. Early results also suggest a role in DNA damage response where PIDD1 may act as a cell-fate switch, through interaction with RIP1 and NEMO/IKKg, activating NF-κB signaling for survival, or as an apoptosis-inducing protein by activating caspase-2. Biallelic truncating mutations in CRADD-the protein bridging PIDD1 and caspase-2-have been reported in intellectual disability (ID), and in a form of lissencephaly. Here, we identified five families with ID from Iran, Pakistan, and India, with four different biallelic mutations in PIDD1, all disrupting the Death Domain (DD), through which PIDD1 interacts with CRADD or RIP1. Nonsense mutations Gln863* and Arg637* directly disrupt the DD, as does a missense mutation, Arg815Trp. A homozygous splice mutation in the fifth family is predicted to disrupt splicing upstream of the DD, as confirmed using an exon trap. In HEK293 cells, we show that both Gln863* and Arg815Trp mutants fail to co-localize with CRADD, leading to its aggregation and mis-localization, and fail to co-precipitate CRADD. Using genome-edited cell lines, we show that these three PIDD1 mutations all cause loss of PIDDosome function. Pidd1 null mice show decreased anxiety, but no motor abnormalities. Together this indicates that PIDD1 mutations in humans may cause ID (and possibly lissencephaly) either through gain of function or secondarily, due to altered scaffolding properties, while complete loss of PIDD1, as modeled in mice, may be well tolerated or is compensated for.

46 citations

Journal ArticleDOI
TL;DR: In this article, the authors have generated deep-sequencing data (Illumina and Pacific Biosciences sequencing) for one of the indica rice cultivars, HR-12 from India.
Abstract: Rice is a major staple food crop in the world. Over 80 % of rice cultivation area is under indica rice. Currently, genomic resources are lacking for indica as compared to japonica rice. In this study, we generated deep-sequencing data (Illumina and Pacific Biosciences sequencing) for one of the indica rice cultivars, HR-12 from India. We assembled over 86 % (389 Mb) of rice genome and annotated 56,284 protein-coding genes from HR-12 genome using Illumina and PacBio sequencing. Comprehensive comparative analyses between indica and japonica subspecies genomes revealed a large number of indica specific variants including SSRs, SNPs and InDels. To mine disease resistance genes, we sequenced few indica rice cultivars that are reported to be highly resistant (Tetep and Tadukan) and susceptible (HR-12 and Co-39) against blast fungal isolates in many countries including India. Whole genome sequencing of rice genotypes revealed high rate of mutations in defense related genes (NB-ARC, LRR and PK domains) in resistant cultivars as compared to susceptible. This study has identified R-genes Pi-ta and Pi54 from durable indica resistant cultivars; Tetep and Tadukan, which can be used in marker assisted selection in rice breeding program. This is the first report of whole genome sequencing approach to characterize Indian rice germplasm. The genomic resources from our work will have a greater impact in understanding global rice diversity, genetics and molecular breeding.

45 citations

Journal ArticleDOI
TL;DR: Proteomic profiling of L. donovani, an organism with an unsequenced genome, finds that the expression of 1387 proteins was detectable in both life stages of the parasite, while 901 and 1423 proteins were identified only in promastigote and amastigotes life stages, respectively.
Abstract: Visceral leishmaniasis or kala azar is the most severe form of leishmaniasis and is caused by the protozoan parasite Leishmania donovani. There is no published report on L. donovani genome sequence available till date, although the genome sequences of three related Leishmania species are already available. Thus, we took a proteogenomic approach to identify proteins from two different life stages of L. donovani. From our analysis of the promastigote (insect) and amastigote (human) stages of L. donovani, we identified a total of 22,322 unique peptides from a homology-based search against proteins from three Leishmania species. These peptides were assigned to 3711 proteins in L. infantum, 3287 proteins in L. major, and 2433 proteins in L. braziliensis. Of the 3711 L. donovani proteins that were identified, the expression of 1387 proteins was detectable in both life stages of the parasite, while 901 and 1423 proteins were identified only in promastigotes and amastigotes life stages, respectively. In addition, we also identified 13 N-terminally and one C-terminally extended proteins based on the proteomic data search against the six-frame translated genome of the three related Leishmania species. Here, we report results from proteomic profiling of L. donovani, an organism with an unsequenced genome.

45 citations

Journal ArticleDOI
TL;DR: A facile route for the one pot synthesis of gold nanoparticles in water using monosodium glutamate as the reducing and stabilizing agent in the absence of seed particles is described and the synthesized nanoparticles are found to be stable and biocompatible.
Abstract: Size and shape controlled synthesis remains a major bottleneck in the research on nanoparticles even after the development of different methods for their preparation. By tuning the size and shape of a nanoparticle, the intrinsic properties of the nanoparticle can be controlled leading tremendous potential applications in different fields of science and technology. We describe a facile route for the one pot synthesis of gold nanoparticles in water using monosodium glutamate as the reducing and stabilizing agent in the absence of seed particles. The particle diameter can be easily controlled by varying the pH of the reaction medium. Nanoparticles were characterized using scanning electron microscopy, UV–vis absorption spectroscopy, cyclic voltammetry, and dynamic light scattering. Zeta potential measurements were made to compare the stability of the different nanoparticles. The results suggest that lower pH favours a nucleation rate giving rise to smaller particles and higher pH favours a growth rate leading to the formation of larger particles. The synthesized nanoparticles are found to be stable and biocompatible. The nanoparticles synthesized at high pH exhibited a good electrocatalytic activity towards oxidation of nicotinamide adenine dinucleotide (NADH).

45 citations


Authors

Showing all 9740 results

NameH-indexPapersCitations
John J.V. McMurray1781389184502
Ashok Kumar1515654164086
Zhanhu Guo12888653378
Vijay P. Singh106169955831
Michael Walsh10296342231
Akhilesh Pandey10052953741
Vivekanand Jha9495885734
Manuel Hidalgo9253841330
Madhukar Pai8952233349
Ravi Kumar8257137722
Vijay V. Kakkar6047017731
G. Münzenberg583369837
Abhishek Sharma524269715
Ramesh R. Bhonde492238397
Chandra P. Sharma4832512100
Network Information
Related Institutions (5)
Panjab University, Chandigarh
18.7K papers, 461K citations

89% related

King Saud University
57.9K papers, 1M citations

88% related

All India Institute of Medical Sciences
40.1K papers, 640.4K citations

88% related

University of Delhi
36.4K papers, 666.9K citations

88% related

King Abdulaziz University
44.9K papers, 1.1M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023102
2022280
20212,150
20201,821
20191,422
20181,083