scispace - formally typeset
Search or ask a question
Institution

Manipal University

EducationManipal, Karnataka, India
About: Manipal University is a education organization based out in Manipal, Karnataka, India. It is known for research contribution in the topics: Population & Health care. The organization has 9525 authors who have published 11207 publications receiving 110687 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This study has carried out an in-depth LC-MS/MS-based proteomic analysis of normal human ciliary body and identified 2,815 proteins, which is the largest catalogue of proteins reported thus far in the ciliaryBody that should provide new insights into the understanding of the factors involved in maintaining the secretion of aqueous humor.
Abstract: Background The ciliary body is the circumferential muscular tissue located just behind the iris in the anterior chamber of the eye. It plays a pivotal role in the production of aqueous humor, maintenance of the lens zonules and accommodation by changing the shape of the crystalline lens. The ciliary body is the major target of drugs against glaucoma as its inhibition leads to a drop in intraocular pressure. A molecular study of the ciliary body could provide a better understanding about the pathophysiological processes that occur in glaucoma. Thus far, no large-scale proteomic investigation has been reported for the human ciliary body.

42 citations

Journal ArticleDOI
26 Jun 2019-eLife
TL;DR: This work finds that within a mature, clonal yeast colony developing in low glucose, cells arrange into metabolically disparate cell groups that spontaneously self-assembly into structured assemblies in complimentary, specialized states.
Abstract: Under certain conditions, single-celled microbes such as yeast and bacteria form communities of many cells. In some cases, the cells in these communities specialize to perform specific roles. By specializing, these cells may help the whole community to survive in difficult environments. These co-dependent communities have some similarities to how cells specialize and work together in larger living things – like animals or plants – that in some cases can contain trillions of cells. Research has already identified the genes involved in creating communities from a population of identical cells. It is less clear how cells within these communities become specialized to different roles. The budding yeast Saccharomyces cerevisiae can help to reveal how genetic and environmental factors contribute to cell communities. By growing yeast in conditions with a low level of glucose, Varahan et al. were able to form cell communities. The communities contained some specialized cells with a high level of activity in a biochemical system called the pentose phosphate pathway (PPP). This is unusual in low-glucose conditions. Further examination showed that many cells in the community produce a sugar called trehalose and, in parts of the community where trehalose levels are high, cells switch to the high PPP state and gain energy from processing trehalose. These findings suggest that the availability of a specific nutrient (in this case, trehalose), which can be made by the cells themselves, is a sufficient signal to trigger specialization of cells. This shows how simple biochemistry can drive specialization and organization of cells. Certain infections are caused by cell communities called biofilms. These findings could also contribute to new approaches to preventing biofilms. This knowledge could in turn reveal how complex multi-cellular organisms evolved, and it may also be relevant to studies looking into the development of cancer.

41 citations

Journal ArticleDOI
TL;DR: Results suggest that both extracts possess hypoglycaemic activity in normal as well as in diabetic rats, and among AlcE and AqsE, aqsE possesses better hypoglycasemic activity than AlcE in all the models.
Abstract: The objective of the study is to investigate the alcoholic (AlcE) and aqueous (AqsE) extracts of stem bark of Erythrina indica (Papilionaceae) for hypoglycaemic effects in normal and diabetic rats. Diabetes was induced in rats by a single dose administration of alloxan (120 mg/kg, i.p.) or by injecting dexamethasone (10 mg/kg, i.p.) for 10 days. In normal rats, AlcE and AqsE had significantly decreased the blood glucose level (BGL) in a dose dependent manner after repeated administration for 7 days. In alloxan-induced diabetic rats, both the extracts decreased blood sugar levels with significant improvement in glucose tolerance and body weight at the end of 1st, 2nd and 3rd week after test extract treatment. In case of dexamethasone induced insulin resistant diabetic rats, repeated administration of AlcE and AqsE inhibited the increase in blood glucose level and improved glucose tolerance induced by dexamethasone as compared to dexamethasone induced diabetic rats. These results suggest that both extracts possess hypoglycaemic activity in normal as well as in diabetic rats. Among AlcE and AqsE, AqsE possesses better hypoglycaemic activity than AlcE in all the models. Preliminary phytochemical investigations revealed that alcoholic extracts contain carbohydrates, alkaloids, flavonoids, saponins, phytosterols, phenolics and tannins. Aqueous extract contains carbohydrates, alkaloids, flavonoids, glycosides, phytosterols and triterpenoids. These phytoconstituents may be responsible for the hypoglycaemic activity of the plant.

41 citations

Journal ArticleDOI
TL;DR: An in vitro drug release study showed that the sustained release of the transfersomal formulations was attributed to the flexibility of the vesicles by which penetration was increased, and ADVTG was found to be promising in treating acne compared with the marketed product.
Abstract: Adapalene-loaded transfersome gel containing vitamin C as a combination therapy for the management of acne vulgaris was developed in the present study. The transfersome was prepared by reverse-phase evaporation, and the effect of various process parameters were investigated by the Design of Experiment (DOE) approach and optimized based on the particle size (PS), polydispersity index (PDI), zeta potential (ZP), and entrapment efficiency (EE). The selected tranfersomes were further evaluated for their thermal behavior and morphology by transmission electron microscopy and turbidity measurements and incorporated into a gel with/without vitamin C. The gel was evaluated and compared with the marketed product (Adiff gel) for various physicochemical parameters, and in vivo studies in testosterone-induced rat models of acne. The prepared transfersomes had PS in the range of 280 to 400 nm, PDI values of 0.416 to 0.8, ZP of − 38 to − 20 mV, and % EE of 32 to 70%. DSC studies confirmed a positive interaction of the components in the transfersome. Surface morphology confirmed that the vesicles were spherical, unilamellar, and discrete. A relative deformability study showed higher elasticity of the transfersomes compared with Adiff aqs gel. Ascorbyl-6-palmitate in adapalene-loaded transfersome gel containing vitamin C (ADVTG) was found to have a good antioxidant free radical–scavenging activity. An in vitro drug release study showed that the sustained release of the transfersomal formulations was attributed to the flexibility of the vesicles by which penetration was increased. ADVTG was found to be promising in treating acne compared with the marketed product.

41 citations

Journal ArticleDOI
TL;DR: A novel targeted TMZ delivery strategy using a potent homing moiety, nestin, tagged to a polymeric nanocomposite to target glioblastoma is reported here a broad horizon for enhanced therapeutic efficacy with further scope for capitalizing on the magnetic properties of SPION for targeted killing of cancer cells while sparing normal tissues.
Abstract: The development of effective therapeutic strategies for glioblastoma faces challenges such as modulating the blood brain barrier (BBB) for drug influx and selectively targeting tumor cells. Nanocarrier drug delivery strategies are functionalized to enhance vascular permeability. We engineered superparamagnetic iron oxide nanoparticle (SPION) based polymeric nanocomposites (84.37 ± 12.37 nm / 101.56 ± 7.42 nm) embedding temozolomide (TMZ) targeted against glioblastoma by tagging an antibody against nestin, a stem cell marker, and transferrin / polysorbate-80 to permeate the BBB. The targeting and therapeutic efficacy of the nanocomposite resulted in enhanced permeability across the BBB in an orthotopic glioblastoma xenograft model. Sustained release of TMZ from the nanocomposite contributed to enhanced tumor cell death while sparing normal brain cells as evidenced through micro SPECT/CT analysis. The functionalized nanocomposites showed significant reductions in tumor volume compared to pure TMZ, as substantiated by reduced proliferation markers such as proliferating cell nuclear antigen (PCNA) and Ki-67. We report here a novel targeted TMZ delivery strategy using a potent homing moiety, nestin, tagged to a polymeric nanocomposite to target glioblastoma. In addition to tumor targeting, this study constitutes a broad horizon for enhanced therapeutic efficacy with further scope for capitalizing on the magnetic properties of SPION for targeted killing of cancer cells while sparing normal tissues.

41 citations


Authors

Showing all 9740 results

NameH-indexPapersCitations
John J.V. McMurray1781389184502
Ashok Kumar1515654164086
Zhanhu Guo12888653378
Vijay P. Singh106169955831
Michael Walsh10296342231
Akhilesh Pandey10052953741
Vivekanand Jha9495885734
Manuel Hidalgo9253841330
Madhukar Pai8952233349
Ravi Kumar8257137722
Vijay V. Kakkar6047017731
G. Münzenberg583369837
Abhishek Sharma524269715
Ramesh R. Bhonde492238397
Chandra P. Sharma4832512100
Network Information
Related Institutions (5)
Panjab University, Chandigarh
18.7K papers, 461K citations

89% related

King Saud University
57.9K papers, 1M citations

88% related

All India Institute of Medical Sciences
40.1K papers, 640.4K citations

88% related

University of Delhi
36.4K papers, 666.9K citations

88% related

King Abdulaziz University
44.9K papers, 1.1M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023102
2022280
20212,150
20201,821
20191,422
20181,083