scispace - formally typeset
Search or ask a question
Institution

Manipal University

EducationManipal, Karnataka, India
About: Manipal University is a education organization based out in Manipal, Karnataka, India. It is known for research contribution in the topics: Population & Medicine. The organization has 9525 authors who have published 11207 publications receiving 110687 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: DNMT2 binds and methylates various mRNA species in a sequence-independent manner and gets re-localized to SGs in a phosphorylation-dependent manner and indicates that HIV-1 enhances its survivability in the host cell by utilizing this RNA methylation capability of DNMT2 to increase the stability of its own genome.
Abstract: The enigmatic methyltransferase, DNMT2 (DNA methyltransferase 2), structurally resembles a DNA methyltransferase, but has been shown to be a tRNA methyltransferase targeting cytosine within a specific CpG in different tRNA molecules. We had previously shown that, during environmental stress conditions, DNMT2 is re-localized from the nucleus to the cytoplasmic stress granules (SGs) and is associated with RNA-processing proteins. In the present study, we show that DNMT2 binds and methylates various mRNA species in a sequence-independent manner and gets re-localized to SGs in a phosphorylation-dependent manner. Importantly, our results indicate that HIV-1 enhances its survivability in the host cell by utilizing this RNA methylation capability of DNMT2 to increase the stability of its own genome. Upon infection, DNMT2 re-localizes from the nucleus to the SGs and methylates HIV-1 RNA. This DNMT2-dependent methylation provided post-transcriptional stability to the HIV-1 RNA. Furthermore, DNMT2 overexpression increased the HIV-1 viral titre. This would suggest that HIV hijacks the RNA-processing machinery within the SGs to ensure its own survival in the host cell. Thus, our findings provide for a novel mechanism by which virus tries to modulate the host cell machinery to its own advantage.

39 citations

Journal ArticleDOI
TL;DR: The study demonstrated that stem cells existed in deciduous and permanent pulp tissue and showed almost a similar expression pattern profile for variety of antigens tested.
Abstract: Aims and objectives: Isolation, characterization and differentiation of dental pulp stem cells (DPSCs) and stem cells from exfoliated human deciduous teeth (SHED). Methods: The pulp tissue was digested in collagenase and cultured in DMEM Dulbecco's Modified Eagle's Media). The stem cells were identified and isolated. Surface characterization of cells was done with flow cytometer using surface markers. An immuno cytochemistry analysis was done. Differentiation potential was analyzed using various differentiation markers. Results: Flow cytometry analyses for various CD markers showed similar results for both DPSCs and SHED. The cells showed positive expression for pluripotent, ectodermal and mesodermal markers. Cells differentiated into osteoblasts and adipocytes. Conclusion: The study demonstrated that stem cells existed in deciduous and permanent pulp tissue. The stem cells present in pulp tissue can be isolated, cultivated and expanded in vitro. Both DPSCs and SHED show almost a similar expression pattern profile for variety of antigens tested.

39 citations

Journal ArticleDOI
TL;DR: In this paper, the pattern of microstructure development and the related mechanical behavior in dissimilar welded joints through a systematic approach was addressed, while impact energy was seen to be a function of austenite in-grain misorientation and δ-ferrite percentage.

38 citations

Journal ArticleDOI
TL;DR: A comprehensive and critical review of psoralidin on its bioavailability, pharmacological activities with focus on molecular mechanisms and cell signaling pathways and opens new natural therapeutic perspectives in chronic diseases.
Abstract: Analysis of the most relevant studies on the pharmacological properties and molecular mechanisms of psoralidin, a bioactive compound from the seeds of Cullen corylifolium (L.) Medik. confirmed its complex therapeutic potential. In the last years, the interest of the scientific community regarding psoralidin increased, especially after the discovery of its benefits in estrogen-related diseases and as a chemopreventive agent. Growing preclinical pieces of evidence indicate that psoralidin has anticancer, antiosteoporotic, anti-inflammatory, anti-vitiligo, antibacterial, antiviral, and antidepressant-like effects. Here, we provide a comprehensive and critical review of psoralidin on its bioavailability, pharmacological activities with focus on molecular mechanisms and cell signaling pathways. In this review, we conducted literature research on the PubMed database using the following keywords: "Psoralidin" or "therapeutic effects" or "biological activity" or "Cullen corylifolium" in order to identify relevant studies regarding PSO bioavailability and mechanisms of therapeutic effects in different diseases based on preclinical, experimental studies. In the light of psoralidin beneficial actions for human health, this paper gathers complete information on its pharmacotherapeutic effects and opens new natural therapeutic perspectives in chronic diseases.

38 citations


Authors

Showing all 9740 results

NameH-indexPapersCitations
John J.V. McMurray1781389184502
Ashok Kumar1515654164086
Zhanhu Guo12888653378
Vijay P. Singh106169955831
Michael Walsh10296342231
Akhilesh Pandey10052953741
Vivekanand Jha9495885734
Manuel Hidalgo9253841330
Madhukar Pai8952233349
Ravi Kumar8257137722
Vijay V. Kakkar6047017731
G. Münzenberg583369837
Abhishek Sharma524269715
Ramesh R. Bhonde492238397
Chandra P. Sharma4832512100
Network Information
Related Institutions (5)
Panjab University, Chandigarh
18.7K papers, 461K citations

89% related

King Saud University
57.9K papers, 1M citations

88% related

All India Institute of Medical Sciences
40.1K papers, 640.4K citations

88% related

University of Delhi
36.4K papers, 666.9K citations

88% related

King Abdulaziz University
44.9K papers, 1.1M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023102
2022280
20212,150
20201,821
20191,422
20181,083