scispace - formally typeset
Search or ask a question
Institution

Manipal University

EducationManipal, Karnataka, India
About: Manipal University is a education organization based out in Manipal, Karnataka, India. It is known for research contribution in the topics: Population & Medicine. The organization has 9525 authors who have published 11207 publications receiving 110687 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: M. smegmatis expressing PE11 (Msmeg-PE11) exhibited altered colony morphology and cell wall lipid composition leading to a marked increase in resistance against various environmental stressors and antibiotics, indicating a potential role of this protein in mycobacterial virulence.
Abstract: The role of the unique proline-glutamic acid (PE)/proline-proline-glutamic acid (PPE) family of proteins in the pathophysiology and virulence of Mycobacterium tuberculosis is not clearly understood. One of the PE family proteins, PE11 (LipX or Rv1169c), specific to pathogenic mycobacteria is found to be over-expressed during infection of macrophages and in active TB patients. In this study, we report that M. smegmatis expressing PE11 (Msmeg-PE11) exhibited altered colony morphology and cell wall lipid composition leading to a marked increase in resistance against various environmental stressors and antibiotics. The cell envelope of Msmeg-PE11 also had greater amount of glycolipids and polar lipids. Msmeg-PE11 was found to have better survival rate in infected macrophages. Mice infected with Msmeg-PE11 had higher bacterial load, showed exacerbated organ pathology and mortality. The liver and lung of Msmeg-PE11-infected mice also had higher levels of IL-10, IL-4 and TNF-α cytokines, indicating a potential role of this protein in mycobacterial virulence.

86 citations

Journal ArticleDOI
TL;DR: In this paper, the secreted frizzled-related protein 4 (sFRP4) was shown to inhibit the growth of CSCs from two HNSCC cell lines, Hep2 and KB.
Abstract: Cancer stem cells (CSCs) of head and neck squamous cell carcinoma (HNSCC) are defined by high self-renewal and drug refractory potential. Involvement of Wnt/β-catenin signaling has been implicated in rapidly cycling cells such as CSCs, and inhibition of the Wnt/β-catenin pathway is a novel approach to target CSCs from HNSCC. In this study, we found that an antagonist of FrzB/Wnt, the secreted frizzled-related protein 4 (sFRP4), inhibited the growth of CSCs from two HNSCC cell lines, Hep2 and KB. We enriched the CD44(+) CSC population, and grew them in spheroid cultures. sFRP4 decreased the proliferation and increased the sensitivity of spheroids to a commonly used drug in HNSCC, namely cisplatin. Self-renewal in sphere formation assays decreased upon sFRP4 treatment, and the effect was reverted by the addition of Wnt3a. sFRP4 treatment of spheroids also decreased β-catenin, confirming its action through the Wnt/β-catenin signaling pathway. Quantitative PCR demonstrated a clear decrease of the stemness markers CD44 and ALDH, and an increase in CD24 and drug-resistance markers ABCG2 and ABCC4. Furthermore, we found that after sFRP4 treatment, there was a reversal in the expression of epithelial to mesenchymal (EMT) markers with the restoration of the epithelial marker E-cadherin, and depletion of EMT-specific markers twist, snail and N-cadherin. This is the first report demonstrating that the naturally occurring Wnt inhibitor, sFRP4, can be a potential drug to destroy CSC-enriched spheroids from HNSCCs. The repression of EMT and the decrease in stemness profile further strengthen the use of sFRP4 as a potent therapeutic against CSCs.

86 citations

Journal ArticleDOI
TL;DR: In this paper, NiFe2O4/polypyrrole nanocomposites are prepared by a simple surface-initiated polymerization method and demonstrate negative permittivity in the low frequency regions.

86 citations

Journal ArticleDOI
01 Oct 2020-Fuel
TL;DR: In this article, the impact of interspecies electron transfer (DIET) via abiotic conductive materials and nanoscale materials on anaerobic digestion has been discussed and the positive and negative impacts of nanoscales on biogas production have been discussed.

85 citations

Journal ArticleDOI
TL;DR: This work identifies a new mechanism of protein aggregate turnover, TRIM16, which could be relevant in protein aggregation‐associated diseases such as neurodegeneration and protects cells against oxidative/proteotoxic stress‐induced toxicity in vitro and in vivo.
Abstract: Sequestration of protein aggregates in inclusion bodies and their subsequent degradation prevents proteostasis imbalance, cytotoxicity, and proteinopathies. The underlying molecular mechanisms controlling the turnover of protein aggregates are mostly uncharacterized. Herein, we show that a TRIM family protein, TRIM16, governs the process of stress‐induced biogenesis and degradation of protein aggregates. TRIM16 facilitates protein aggregate formation by positively regulating the p62‐NRF2 axis. We show that TRIM16 is an integral part of the p62‐KEAP1‐NRF2 complex and utilizes multiple mechanisms for stabilizing NRF2. Under oxidative and proteotoxic stress conditions, TRIM16 activates ubiquitin pathway genes and p62 via NRF2, leading to ubiquitination of misfolded proteins and formation of protein aggregates. We further show that TRIM16 acts as a scaffold protein and, by interacting with p62, ULK1, ATG16L1, and LC3B, facilitates autophagic degradation of protein aggregates. Thus, TRIM16 streamlines the process of stress‐induced aggregate clearance and protects cells against oxidative/proteotoxic stress‐induced toxicity in vitro and in vivo . Taken together, this work identifies a new mechanism of protein aggregate turnover, which could be relevant in protein aggregation‐associated diseases such as neurodegeneration.

85 citations


Authors

Showing all 9740 results

NameH-indexPapersCitations
John J.V. McMurray1781389184502
Ashok Kumar1515654164086
Zhanhu Guo12888653378
Vijay P. Singh106169955831
Michael Walsh10296342231
Akhilesh Pandey10052953741
Vivekanand Jha9495885734
Manuel Hidalgo9253841330
Madhukar Pai8952233349
Ravi Kumar8257137722
Vijay V. Kakkar6047017731
G. Münzenberg583369837
Abhishek Sharma524269715
Ramesh R. Bhonde492238397
Chandra P. Sharma4832512100
Network Information
Related Institutions (5)
Panjab University, Chandigarh
18.7K papers, 461K citations

89% related

King Saud University
57.9K papers, 1M citations

88% related

All India Institute of Medical Sciences
40.1K papers, 640.4K citations

88% related

University of Delhi
36.4K papers, 666.9K citations

88% related

King Abdulaziz University
44.9K papers, 1.1M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023102
2022280
20212,150
20201,821
20191,422
20181,083