scispace - formally typeset
Search or ask a question
Institution

Martin Luther University of Halle-Wittenberg

EducationHalle, Germany
About: Martin Luther University of Halle-Wittenberg is a education organization based out in Halle, Germany. It is known for research contribution in the topics: Population & Liquid crystal. The organization has 20232 authors who have published 38773 publications receiving 965004 citations. The organization is also known as: MLU & University of Wittenberg.


Papers
More filters
Journal ArticleDOI
TL;DR: New folding procedures have been developed for efficient in vitro reconstitution of complex hydrophobic, multidomain, oligomeric, or highly disulfíde‐bonded proteins.
Abstract: Insoluble, inactive inclusion bodies are frequently formed upon recombinant protein production in transformed microorganisms. These inclusion bodies, which contain the recombinant protein in an highly enriched form, can be isolated by solid/liquid separation. After solubilization, native proteins can be generated from the inactive material by using in vitro folding techniques. New folding procedures have been developed for efficient in vitro reconstitution of complex hydrophobic, multidomain, oligomeric, or highly disulfide-bonded proteins. These protocols take into account process parameters such as protein concentration, catalysis of disulfide bond formation, temperature, pH, and ionic strength, as well as specific solvent ingredients that reduce unproductive side reactions. Modification of the protein sequence has been exploited to improve in vitro folding.

690 citations

Journal ArticleDOI
TL;DR: Improved international cooperation is crucial to reduce the impacts of invasive alien species on biodiversity, ecosystem services, and human livelihoods, as synergies with other global changes are exacerbating current invasions and facilitating new ones, thereby escalating the extent and impacts of invaders.
Abstract: Biological invasions are a global consequence of an increasingly connected world and the rise in human population size The numbers of invasive alien species – the subset of alien species that spread widely in areas where they are not native, affecting the environment or human livelihoods – are increasing Synergies with other global changes are exacerbating current invasions and facilitating new ones, thereby escalating the extent and impacts of invaders Invasions have complex and often immense long‐term direct and indirect impacts In many cases, such impacts become apparent or problematic only when invaders are well established and have large ranges Invasive alien species break down biogeographic realms, affect native species richness and abundance, increase the risk of native species extinction, affect the genetic composition of native populations, change native animal behaviour, alter phylogenetic diversity across communities, and modify trophic networks Many invasive alien species also change ecosystem functioning and the delivery of ecosystem services by altering nutrient and contaminant cycling, hydrology, habitat structure, and disturbance regimes These biodiversity and ecosystem impacts are accelerating and will increase further in the future Scientific evidence has identified policy strategies to reduce future invasions, but these strategies are often insufficiently implemented For some nations, notably Australia and New Zealand, biosecurity has become a national priority There have been long‐term successes, such as eradication of rats and cats on increasingly large islands and biological control of weeds across continental areas However, in many countries, invasions receive little attention Improved international cooperation is crucial to reduce the impacts of invasive alien species on biodiversity, ecosystem services, and human livelihoods Countries can strengthen their biosecurity regulations to implement and enforce more effective management strategies that should also address other global changes that interact with invasions

677 citations

Journal ArticleDOI
TL;DR: In this article, the authors determined the SSA and the enthalpy of N2 adsorption of separates with a density > 1.6 cm−3 from 196 mineral horizons of forest soils before and after removal of organic matter with NaOCl.
Abstract: Summary The organic carbon content of soil is positively related to the specific surface area (SSA), but large amounts of organic matter in soil result in reduced SSA as determined by applying the Brunauer–Emmett–Teller (BET) equation to the adsorption of N2. To elucidate some of the controlling mechanisms of this relation, we determined the SSA and the enthalpy of N2 adsorption of separates with a density > 1.6 g cm−3 from 196 mineral horizons of forest soils before and after removal of organic matter with NaOCl. Likewise, we investigated these characteristics before and after sorption of increasing amounts of organic matter to four mineral soil samples, oxides (amorphous Al(OH)3, gibbsite, ferrihydrite, goethite, haematite), and phyllosilicates (kaolinite, illite). Sorption of organic matter reduced the SSA, depending on the amount sorbed and the type of mineral. The reduction in SSA decreased at larger organic matter loadings. The SSA of the mineral soils was positively related to the content of Fe oxyhydroxides and negatively related to the content of organic C. The strong reduction in SSA at small loadings was due primarily to the decrease in the micropores to which N2 was accessible. This suggests preferential sorption of organic matter at reactive sites in or at the mouths of micropores during the initial sorption and attachment to less reactive sites at increasing loadings. The exponential decrease of the heat of gas adsorption with the surface loading points also to a filling or clogging of micropores at early stages of organic matter accumulation. Desorption induced a small recovery of the total SSA but not of the micropore surface area. Destruction of organic matter increased the SSA of all soil samples. The SSA of the uncovered mineral matrix related strongly to the amounts of Fe oxyhydroxides and the clay. Normalized to C removed, the increase in SSA was small in topsoils and illuvial horizons of Podzols rich in C and large for the subsoils containing little C. This suggests that micropores preferentially associate with organic matter, especially at small loadings. The coverage of the surface of the soil mineral matrix as calculated from the SSA before and after destruction of organic matter was correlated only with depth, and the relation appeared to be linear. We conclude that mineralogy is the primary control of the relation between surface area and sorption of organic matter within same soil compartments (i.e. horizons). But at the scale of complete profiles, the surface accumulation and stabilization of organic matter is additionally determined by its input.

674 citations

Journal ArticleDOI
TL;DR: The results indicate that the long-term exposure to this pollutant may be one of the most important contributors to fatality caused by the COVID-19 virus in these regions and maybe across the whole world.

671 citations

Journal ArticleDOI
TL;DR: The improvements in pancreatic cancer treatment obtained in the past few years are explored, key questions related to the future development of new therapies are discussed and where successes are likely to be achieved in the future are addressed.
Abstract: The overall 5-year survival for pancreatic cancer has changed little over the past few decades, and pancreatic cancer is predicted to be the second leading cause of cancer-related mortality in the next decade in Western countries. The past few years, however, have seen improvements in first-line and second-line palliative therapies and considerable progress in increasing survival with adjuvant treatment. The use of biomarkers to help define treatment and the potential of neoadjuvant therapies also offer opportunities to improve outcomes. This Review brings together information on achievements to date, what is working currently and where successes are likely to be achieved in the future. Furthermore, we address the questions of how we should approach the development of pancreatic cancer treatments, including those for patients with metastatic, locally advanced and borderline resectable pancreatic cancer, as well as for patients with resected tumours. In addition to embracing newer strategies comprising genomics, stromal therapies and immunotherapies, conventional approaches using chemotherapy and radiotherapy still offer considerable prospects for greater traction and synergy with evolving concepts.

667 citations


Authors

Showing all 20466 results

NameH-indexPapersCitations
Niels Birbaumer14283577853
Michael Schmitt1342007114667
Niels E. Skakkebæk12759659925
Stefan D. Anker117415104945
Pedro W. Crous11580951925
Eric Verdin11537047971
Bernd Nilius11249644812
Josep Tabernero11180368982
Hans-Dieter Volk10778446622
Dan Rujescu10655260406
John I. Nurnberger10552251402
Ulrich Gösele10260346223
Wolfgang J. Parak10246943307
Martin F. Bachmann10041534124
Munir Pirmohamed9767539822
Network Information
Related Institutions (5)
University of Göttingen
86.3K papers, 3M citations

95% related

University of Freiburg
77.2K papers, 2.8M citations

94% related

Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

94% related

University of Tübingen
84.1K papers, 3M citations

93% related

University of Bonn
86.4K papers, 3.1M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202397
2022331
20212,038
20202,007
20191,617
20181,604