scispace - formally typeset
Search or ask a question
Institution

Martin Luther University of Halle-Wittenberg

EducationHalle, Germany
About: Martin Luther University of Halle-Wittenberg is a education organization based out in Halle, Germany. It is known for research contribution in the topics: Population & Liquid crystal. The organization has 20232 authors who have published 38773 publications receiving 965004 citations. The organization is also known as: MLU & University of Wittenberg.


Papers
More filters
Journal ArticleDOI
TL;DR: In bacteria, two major pathways exist to secrete proteins across the cytoplasmic membrane: the general Secretion route and the Twin-arginine translocation pathway, which catalyses the translocation of secretory proteins in their folded state.

487 citations

Journal ArticleDOI
TL;DR: The IGF2BP family’s role in cancer biology is discussed and how this correlates with their proposed functions during embryogenesis is discussed, which could provide valuable targets in cancer treatment with many of their in vivo roles to be fully elucidated.
Abstract: The insulin-like growth factor-2 mRNA-binding proteins 1, 2, and 3 (IGF2BP1, IGF2BP2, IGF2BP3) belong to a conserved family of RNA-binding, oncofetal proteins. Several studies have shown that these proteins act in various important aspects of cell function, such as cell polarization, migration, morphology, metabolism, proliferation and differentiation. In this review, we discuss the IGF2BP family's role in cancer biology and how this correlates with their proposed functions during embryogenesis. IGF2BPs are mainly expressed in the embryo, in contrast with comparatively lower or negotiable levels in adult tissues. IGF2BP1 and IGF2BP3 have been found to be re-expressed in several aggressive cancer types. Control of IGF2BPs' expression is not well understood; however, let-7 microRNAs, β-catenin (CTNNB1) and MYC have been proposed to be involved in their regulation. In contrast to many other RNA-binding proteins, IGF2BPs are almost exclusively observed in the cytoplasm where they associate with target mRNAs in cytoplasmic ribonucleoprotein complexes (mRNPs). During development, IGF2BPs are required for proper nerve cell migration and morphological development, presumably involving the control of cytoskeletal remodeling and dynamics, respectively. Likewise, IGF2BPs modulate cell polarization, adhesion and migration in tumor-derived cells. Moreover, they are highly associated with cancer metastasis and the expression of oncogenic factors (KRAS, MYC and MDR1). However, a pro-metastatic role of IGF2BPs remains controversial due to the lack of 'classical' in vivo studies. Nonetheless, IGF2BPs could provide valuable targets in cancer treatment with many of their in vivo roles to be fully elucidated.

485 citations

Journal ArticleDOI
TL;DR: The characterization of the fungal metabolite chaetocin as the first inhibitor of a lysine-specific histone methyltransferase for SU(VAR)3-9 both in vitro and in vivo is reported.
Abstract: Histone methylation plays a key role in establishing and maintaining stable gene expression patterns during cellular differentiation and embryonic development. Here, we report the characterization of the fungal metabolite chaetocin as the first inhibitor of a lysine-specific histone methyltransferase. Chaetocin is specific for the methyltransferase SU(VAR)3-9 both in vitro and in vivo and may therefore be used to study heterochromatin-mediated gene repression.

485 citations

Journal ArticleDOI
TL;DR: Over a 6-month period, transdermal TRT was associated with beneficial effects on insulin resistance, total and LDL-cholesterol, Lpa, and sexual health in hypogonadal men with type 2 diabetes and/or MetS.
Abstract: OBJECTIVE This study evaluated the effects of testosterone replacement therapy (TRT) on insulin resistance, cardiovascular risk factors, and symptoms in hypogonadal men with type 2 diabetes and/or metabolic syndrome (MetS). RESEARCH DESIGN AND METHODS The efficacy, safety, and tolerability of a novel transdermal 2% testosterone gel was evaluated over 12 months in 220 hypogonadal men with type 2 diabetes and/or MetS in a multicenter, prospective, randomized, double-blind, placebo-controlled study. The primary outcome was mean change from baseline in homeostasis model assessment of insulin resistance (HOMA-IR). Secondary outcomes were measures of body composition, glycemic control, lipids, and sexual function. Efficacy results focused primarily on months 0−6 (phase 1; no changes in medication allowed). Medication changes were allowed in phase 2 (months 6−12). RESULTS TRT reduced HOMA-IR in the overall population by 15.2% at 6 months ( P = 0.018) and 16.4% at 12 months ( P = 0.006). In type 2 diabetic patients, glycemic control was significantly better in the TRT group than the placebo group at month 9 (HbA 1c : treatment difference, −0.446%; P = 0.035). Improvements in total and LDL cholesterol, lipoprotein a (Lpa), body composition, libido, and sexual function occurred in selected patient groups. There were no significant differences between groups in the frequencies of adverse events (AEs) or serious AEs. The majority of AEs (>95%) were mild or moderate. CONCLUSIONS Over a 6-month period, transdermal TRT was associated with beneficial effects on insulin resistance, total and LDL-cholesterol, Lpa, and sexual health in hypogonadal men with type 2 diabetes and/or MetS.

484 citations

Journal ArticleDOI
TL;DR: In contrast to other well-studied CBA-type heavy metal efflux systems, Cus was shown to be a tetrapartite resistance system that involves the novel periplasmic copper-binding protein CusF, providing additional evidence for the hypothesis that Cu(I) is directly transported from the periplasms across the outer membrane by the Cus complex.
Abstract: The cus determinant of Escherichia coli encodes the CusCFBA proteins that mediate resistance to copper and silver by cation efflux. CusA and CusB were essential for copper resistance, and CusC and CusF were required for full resistance. Replacements of methionine residues 573, 623, and 672 with isoleucine in CusA resulted in loss of copper resistance, demonstrating their functional importance. Substitutions for several other methionine residues of this protein did not have any effect. The small 10-kDa protein CusF (previously YlcC) was shown to be a periplasmic protein. CusF bound one copper per polypeptide. The pink CusF copper protein complex exhibited an absorption maximum at around 510 nm. Methionine residues of CusF were involved in copper binding as shown by site-directed mutagenesis. CusF interacted with CusB and CusC polypeptides in a yeast two-hybrid assay. In contrast to other well-studied CBA-type heavy metal efflux systems, Cus was shown to be a tetrapartite resistance system that involves the novel periplasmic copper-binding protein CusF. These data provide additional evidence for the hypothesis that Cu(I) is directly transported from the periplasm across the outer membrane by the Cus complex.

483 citations


Authors

Showing all 20466 results

NameH-indexPapersCitations
Niels Birbaumer14283577853
Michael Schmitt1342007114667
Niels E. Skakkebæk12759659925
Stefan D. Anker117415104945
Pedro W. Crous11580951925
Eric Verdin11537047971
Bernd Nilius11249644812
Josep Tabernero11180368982
Hans-Dieter Volk10778446622
Dan Rujescu10655260406
John I. Nurnberger10552251402
Ulrich Gösele10260346223
Wolfgang J. Parak10246943307
Martin F. Bachmann10041534124
Munir Pirmohamed9767539822
Network Information
Related Institutions (5)
University of Göttingen
86.3K papers, 3M citations

95% related

University of Freiburg
77.2K papers, 2.8M citations

94% related

Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

94% related

University of Tübingen
84.1K papers, 3M citations

93% related

University of Bonn
86.4K papers, 3.1M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202397
2022331
20212,038
20202,007
20191,617
20181,604