scispace - formally typeset
Search or ask a question
Institution

Martin Luther University of Halle-Wittenberg

EducationHalle, Germany
About: Martin Luther University of Halle-Wittenberg is a education organization based out in Halle, Germany. It is known for research contribution in the topics: Population & Liquid crystal. The organization has 20232 authors who have published 38773 publications receiving 965004 citations. The organization is also known as: MLU & University of Wittenberg.


Papers
More filters
Journal ArticleDOI
TL;DR: This article reviews the current knowledge about the intracellular production of H2O2 along with redox signaling pathways mediating either the growth or apoptosis of tumor cells and how the targeting of H 2O2-linked sources and/or signaling components involved in tumor progression and survival might lead to novel therapeutic targets.
Abstract: Hydrogen peroxide (H2O2) is involved in various signal transduction pathways and cell fate decisions. The mechanism of the so called “redox signaling” includes the H2O2-mediated reversible oxidation of redox sensitive cysteine residues in enzymes and transcription factors thereby altering their activities. Depending on its intracellular concentration and localization, H2O2 exhibits either pro- or anti-apoptotic activities. In comparison to normal cells, cancer cells are characterized by an increased H2O2 production rate and an impaired redox balance thereby affecting the microenvironment as well as the anti-tumoral immune response. This article reviews the current knowledge about the intracellular production of H2O2 along with redox signaling pathways mediating either the growth or apoptosis of tumor cells. In addition it will be discussed how the targeting of H2O2-linked sources and/or signaling components involved in tumor progression and survival might lead to novel therapeutic targets.

367 citations

Journal ArticleDOI
TL;DR: Despite the need for effective mechanical circulatory support in CSMI, current devices, as tested, have not been demonstrated to improve short- or long-term survival rates.
Abstract: Despite advances in coronary revascularization and widespread use of primary percutaneous interventions, cardiogenic shock complicating an acute ST-elevation myocardial infarction (CSMI) remains a clinical challenge with high mortality rates. Conservative management with catecholamines is associated with serious limitations, including arrhythmias, increased myocardial oxygen consumption, and inadequate circulatory support. Clinicians have therefore turned to mechanical means of circulatory support. Circulatory assist systems for CSMI can be distinguished by the method of placement (i.e. percutaneous vs. surgical), the type of circulatory support (i.e. left ventricular, right ventricular, or biventricular pressure and/or volume unloading), and whether they are combined with extracorporal membrane oxygenation (ECMO). The percutaneous assist systems most commonly used in CSMI are the intra-aortic balloon pump (IABP), venoarterial ECMO, the Impella pump, and the TandemHeart. Decades of clinical studies and experience demonstrated haemodynamic improvement, including elevation of diastolic perfusion pressure and cardiac output. Recently, the large randomized IABP-Shock II Trial did not show a significant reduction in 30-day mortality in CSMI with IABP insertion. There are no randomized study data available for ECMO use in CSMI. Both the Impella pump and the TandemHeart did not reduce 30-day mortality when compared with IABP in small randomized controlled trials (RCTs). In conclusion, despite the need for effective mechanical circulatory support in CSMI, current devices, as tested, have not been demonstrated to improve short- or long-term survival rates. RCTs testing the optimal timing of device therapy and optimal device design are needed to improve outcomes in CSMI.

364 citations

Journal ArticleDOI
TL;DR: The aim of this review is to summarize the current knowledge of T3S system components and associated control proteins from both plant- and animal-pathogenic bacteria.
Abstract: Flagellar and translocation-associated type III secretion (T3S) systems are present in most gram-negative plant- and animal-pathogenic bacteria and are often essential for bacterial motility or pathogenicity. The architectures of the complex membrane-spanning secretion apparatuses of both systems are similar, but they are associated with different extracellular appendages, including the flagellar hook and filament or the needle/pilus structures of translocation-associated T3S systems. The needle/pilus is connected to a bacterial translocon that is inserted into the host plasma membrane and mediates the transkingdom transport of bacterial effector proteins into eukaryotic cells. During the last 3 to 5 years, significant progress has been made in the characterization of membrane-associated core components and extracellular structures of T3S systems. Furthermore, transcriptional and posttranscriptional regulators that control T3S gene expression and substrate specificity have been described. Given the architecture of the T3S system, it is assumed that extracellular components of the secretion apparatus are secreted prior to effector proteins, suggesting that there is a hierarchy in T3S. The aim of this review is to summarize our current knowledge of T3S system components and associated control proteins from both plant- and animal-pathogenic bacteria.

362 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the extreme flexibility of oxide perovskites in terms of their structures and compositions, which lead to a treasure trove of materials for diverse applications, and attempt to build the connections between the structural and compositional flexibility and the tunable material properties desirable for various applications.
Abstract: Searching for novel functional materials represents an important direction in the research and development of renewable energy. Due to their unique structural and compositional flexibility and high material stability, oxide perovskites and their derivatives have recently been extensively explored as a class of versatile materials for applications in electrocatalysis (EC), photocatalysis (PC) and photovoltaics (PV), showing great promise in terms of catalytic activity and device stability. In this review, we firstly discuss the extreme flexibilities of oxide perovskites in terms of their structures and compositions, which lead to a treasure trove of materials for diverse applications. Secondly, the current status of their applications and challenges in EC, PC and PV are reviewed. We attempt to build the connections between the structural and compositional flexibility and the tunable material properties desirable for various applications.

362 citations

Journal ArticleDOI
TL;DR: In this article, the mirror symmetry in generalized Calabi-Yau compactifications of type II string theories with background NS fluxes was discussed, and it was shown that the mirror type IIA theory arises from a purely geometrical compactification on a different class of sixmanifolds.
Abstract: We discuss mirror symmetry in generalized Calabi-Yau compactifications of type II string theories with background NS fluxes. Starting from type IIB compactified on Calabi-Yau threefolds with NS three-form flux we show that the mirror type IIA theory arises from a purely geometrical compactification on a different class of six-manifolds. These mirror manifolds have SU(3) structure and are termed half-flat; they are neither complex nor Ricci-flat and their holonomy group is no longer SU(3). We show that type IIA appropriately compactified on such manifolds gives the correct mirror-symmetric low-energy effective action.

362 citations


Authors

Showing all 20466 results

NameH-indexPapersCitations
Niels Birbaumer14283577853
Michael Schmitt1342007114667
Niels E. Skakkebæk12759659925
Stefan D. Anker117415104945
Pedro W. Crous11580951925
Eric Verdin11537047971
Bernd Nilius11249644812
Josep Tabernero11180368982
Hans-Dieter Volk10778446622
Dan Rujescu10655260406
John I. Nurnberger10552251402
Ulrich Gösele10260346223
Wolfgang J. Parak10246943307
Martin F. Bachmann10041534124
Munir Pirmohamed9767539822
Network Information
Related Institutions (5)
University of Göttingen
86.3K papers, 3M citations

95% related

University of Freiburg
77.2K papers, 2.8M citations

94% related

Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

94% related

University of Tübingen
84.1K papers, 3M citations

93% related

University of Bonn
86.4K papers, 3.1M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202397
2022331
20212,038
20202,007
20191,617
20181,604