Institution
Massachusetts Institute of Technology
Education•Cambridge, Massachusetts, United States•
About: Massachusetts Institute of Technology is a(n) education organization based out in Cambridge, Massachusetts, United States. It is known for research contribution in the topic(s): Population & Laser. The organization has 116795 authors who have published 268000 publication(s) receiving 18272025 citation(s). The organization is also known as: MIT & M.I.T..
Topics: Population, Laser, Galaxy, Gene, Scattering
Papers
More filters
Massachusetts Institute of Technology1, Wellcome Trust Sanger Institute2, Washington University in St. Louis3, United States Department of Energy4, Baylor College of Medicine5, University of Texas Health Science Center at San Antonio6, Yeshiva University7, University of Texas Health Science Center at Houston8, Université Paris-Saclay9, National Institutes of Health10, Chinese Academy of Sciences11, Chinese National Human Genome Center12, Institute for Systems Biology13, Stanford University14, University of Oklahoma15, Max Planck Society16, Cold Spring Harbor Laboratory17, Case Western Reserve University18, Max Delbrück Center for Molecular Medicine19, University of California, Santa Cruz20, Thermo Fisher Scientific21, Trinity College, Dublin22, Weizmann Institute of Science23, University of Michigan24, University of Oxford25, University of Washington26, Keio University27, University of Texas Southwestern Medical Center28, Wellcome Trust29
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.
21,023 citations
Abstract: The number and variety of known compounrjs between proteins and small molecules are increasing rapidly and make a fascinating story. For instance, there are the compounds of iron, which is carried in our blood plasma by a globulin, two atoms of iron to each molecule of globulin held in a rather tight salt-lie binding? which is stored as ferric hydroxide by ferritin much as water is held by a sponge? and which functions in hemoglobin, four iron atoms in tight porphyrin complexes in each protein molecule. Or, there are many compounds of serum albumin, which was used during the war by many chemists, most of whom found at least one 6ew compound. This molecule, which has about a hundred carboxyl radicals, each of which can take on a proton, and about the same number of ammonium radicals, each of which can dissociate a proton, has one single radical which combines with mercuric ion so firmly that two albumin molecules will share one mercury atom if there are not enough to go a r ~ u n d . ~ At the present stage of rapid growth of known compounds, it seems more profitable for me to make no attempt to catalogue the various classes of compounds, but to discuss the general principles involved, in the hope that this will make more useful the information which is accumulating so rapidy from so many laboratories. We want to know of each molecule or ion whicb can combine with a protein molecule, /‘How many? How tightly? Where? Why?” The answer to the first two questions, and sometimes to the third, can be furnished by the physical chemist, but he will often need to team with an organic chemist to determine the effect of altering specified groups to find if they are reactive. The determination of function iç a complicated problem which may be the business of the physiologist or physiological chemist. But the answers to both of the more complicated problems will depend on the answers to the simpler questions, “HOW many?” and “How tightly bound?” If the various groups on a protein molecule act independently, we can apply the law of mass action as though each group were on a separate molecule,4 and the strength of binding can be expressed as the constant for each group. Often, a single constant will express the behavior of severa1 groups. If the constants are widely spread, as those for the reaction of hydrogen ion with carboxylate ions, with imidazoles and with amines, the interpretation is simple. If the separation is less, it is very difficult to distinguish the case of different intrinsic affinities from the case of interaction among the groups. We know that such interaction occurs in simple moleculeç in which a reac-
20,037 citations
Abstract: I. Introduction, 65. — II. A model of long-run growth, 66. — III. Possible growth patterns, 68. — IV. Examples, 73. — V. Behavior of interest and wage rates, 78. — VI. Extensions, 85. — VII. Qualifications, 91.
18,947 citations
TL;DR: The current understanding of miRNA target recognition in animals is outlined and the widespread impact of miRNAs on both the expression and evolution of protein-coding genes is discussed.
Abstract: MicroRNAs (miRNAs) are endogenous ∼23 nt RNAs that play important gene-regulatory roles in animals and plants by pairing to the mRNAs of protein-coding genes to direct their posttranscriptional repression. This review outlines the current understanding of miRNA target recognition in animals and discusses the widespread impact of miRNAs on both the expression and evolution of protein-coding genes.
16,392 citations
TL;DR: This chapter assumes acquaintance with the principles and practice of PCR, as outlined in, for example, refs.
Abstract: 1. Introduction Designing PCR and sequencing primers are essential activities for molecular biologists around the world. This chapter assumes acquaintance with the principles and practice of PCR, as outlined in, for example, refs. 1–4. Primer3 is a computer program that suggests PCR primers for a variety of applications, for example to create STSs (sequence tagged sites) for radiation hybrid mapping (5), or to amplify sequences for single nucleotide polymor-phism discovery (6). Primer3 can also select single primers for sequencing reactions and can design oligonucleotide hybridization probes. In selecting oligos for primers or hybridization probes, Primer3 can consider many factors. These include oligo melting temperature, length, GC content , 3′ stability, estimated secondary structure, the likelihood of annealing to or amplifying undesirable sequences (for example interspersed repeats), the likelihood of primer–dimer formation between two copies of the same primer, and the accuracy of the source sequence. In the design of primer pairs Primer3 can consider product size and melting temperature, the likelihood of primer– dimer formation between the two primers in the pair, the difference between primer melting temperatures, and primer location relative to particular regions of interest or to be avoided.
16,058 citations
Authors
Showing all 116795 results
Name | H-index | Papers | Citations |
---|---|---|---|
Eric S. Lander | 301 | 826 | 525976 |
Robert Langer | 281 | 2324 | 326306 |
George M. Whitesides | 240 | 1739 | 269833 |
Trevor W. Robbins | 231 | 1137 | 164437 |
George Davey Smith | 224 | 2540 | 248373 |
Yi Cui | 220 | 1015 | 199725 |
Robert J. Lefkowitz | 214 | 860 | 147995 |
David J. Hunter | 213 | 1836 | 207050 |
Daniel Levy | 212 | 933 | 194778 |
Rudolf Jaenisch | 206 | 606 | 178436 |
Mark J. Daly | 204 | 763 | 304452 |
David Miller | 203 | 2573 | 204840 |
David Baltimore | 203 | 876 | 162955 |
Rakesh K. Jain | 200 | 1467 | 177727 |
Ronald M. Evans | 199 | 708 | 166722 |