scispace - formally typeset

Massachusetts Institute of Technology

EducationCambridge, Massachusetts, United States
About: Massachusetts Institute of Technology is a(n) education organization based out in Cambridge, Massachusetts, United States. It is known for research contribution in the topic(s): Population & Laser. The organization has 116795 authors who have published 268000 publication(s) receiving 18272025 citation(s). The organization is also known as: MIT & M.I.T..
Topics: Population, Laser, Galaxy, Gene, Scattering
More filters

Journal ArticleDOI
S. Agostinelli1, John Allison2, K. Amako3, J. Apostolakis4, Henrique Araujo5, P. Arce4, Makoto Asai6, D. Axen4, S. Banerjee7, G. Barrand, F. Behner4, Lorenzo Bellagamba8, J. Boudreau9, L. Broglia10, A. Brunengo8, H. Burkhardt4, Stephane Chauvie, J. Chuma11, R. Chytracek4, Gene Cooperman12, G. Cosmo4, P. V. Degtyarenko13, Andrea Dell'Acqua4, G. Depaola14, D. Dietrich15, R. Enami, A. Feliciello, C. Ferguson16, H. Fesefeldt4, Gunter Folger4, Franca Foppiano, Alessandra Forti2, S. Garelli, S. Gianì4, R. Giannitrapani17, D. Gibin4, J. J. Gomez Y Cadenas4, I. González4, G. Gracia Abril4, G. Greeniaus18, Walter Greiner15, Vladimir Grichine, A. Grossheim4, Susanna Guatelli, P. Gumplinger11, R. Hamatsu19, K. Hashimoto, H. Hasui, A. Heikkinen20, A. S. Howard5, Vladimir Ivanchenko4, A. Johnson6, F.W. Jones11, J. Kallenbach, Naoko Kanaya4, M. Kawabata, Y. Kawabata, M. Kawaguti, S.R. Kelner21, Paul R. C. Kent22, A. Kimura23, T. Kodama24, R. P. Kokoulin21, M. Kossov13, Hisaya Kurashige25, E. Lamanna26, Tapio Lampén20, V. Lara4, Veronique Lefebure4, F. Lei16, M. Liendl4, W. S. Lockman, Francesco Longo27, S. Magni, M. Maire, E. Medernach4, K. Minamimoto24, P. Mora de Freitas, Yoshiyuki Morita3, K. Murakami3, M. Nagamatu24, R. Nartallo28, Petteri Nieminen28, T. Nishimura, K. Ohtsubo, M. Okamura, S. W. O'Neale29, Y. Oohata19, K. Paech15, J Perl6, Andreas Pfeiffer4, Maria Grazia Pia, F. Ranjard4, A.M. Rybin, S.S Sadilov4, E. Di Salvo8, Giovanni Santin27, Takashi Sasaki3, N. Savvas2, Y. Sawada, Stefan Scherer15, S. Sei24, V. Sirotenko4, David J. Smith6, N. Starkov, H. Stoecker15, J. Sulkimo20, M. Takahata23, Satoshi Tanaka30, E. Tcherniaev4, E. Safai Tehrani6, M. Tropeano1, P. Truscott31, H. Uno24, L. Urbán, P. Urban32, M. Verderi, A. Walkden2, W. Wander33, H. Weber15, J.P. Wellisch4, Torre Wenaus34, D.C. Williams, Douglas Wright6, T. Yamada24, H. Yoshida24, D. Zschiesche15 
Abstract: G eant 4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from 250 eV and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics.

16,046 citations


Journal ArticleDOI
Abstract: QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.

15,767 citations

Journal ArticleDOI
Abstract: Finite systems of deterministic ordinary nonlinear differential equations may be designed to represent forced dissipative hydrodynamic flow. Solutions of these equations can be identified with trajectories in phase space For those systems with bounded solutions, it is found that nonperiodic solutions are ordinarily unstable with respect to small modifications, so that slightly differing initial states can evolve into consider­ably different states. Systems with bounded solutions are shown to possess bounded numerical solutions.

15,109 citations

Journal ArticleDOI
TL;DR: An encryption method is presented with the novel property that publicly revealing an encryption key does not thereby reveal the corresponding decryption key.
Abstract: An encryption method is presented with the novel property that publicly revealing an encryption key does not thereby reveal the corresponding decryption key. This has two important consequences: (1) Couriers or other secure means are not needed to transmit keys, since a message can be enciphered using an encryption key publicly revealed by the intented recipient. Only he can decipher the message, since only he knows the corresponding decryption key. (2) A message can be “signed” using a privately held decryption key. Anyone can verify this signature using the corresponding publicly revealed encryption key. Signatures cannot be forged, and a signer cannot later deny the validity of his signature. This has obvious applications in “electronic mail” and “electronic funds transfer” systems. A message is encrypted by representing it as a number M, raising M to a publicly specified power e, and then taking the remainder when the result is divided by the publicly specified product, n, of two large secret primer numbers p and q. Decryption is similar; only a different, secret, power d is used, where e * d ≡ 1(mod (p - 1) * (q - 1)). The security of the system rests in part on the difficulty of factoring the published divisor, n.

14,611 citations

Journal ArticleDOI
TL;DR: A near-real-time computer system that can locate and track a subject's head, and then recognize the person by comparing characteristics of the face to those of known individuals, and that is easy to implement using a neural network architecture.
Abstract: We have developed a near-real-time computer system that can locate and track a subject's head, and then recognize the person by comparing characteristics of the face to those of known individuals. The computational approach taken in this system is motivated by both physiology and information theory, as well as by the practical requirements of near-real-time performance and accuracy. Our approach treats the face recognition problem as an intrinsically two-dimensional (2-D) recognition problem rather than requiring recovery of three-dimensional geometry, taking advantage of the fact that faces are normally upright and thus may be described by a small set of 2-D characteristic views. The system functions by projecting face images onto a feature space that spans the significant variations among known face images. The significant features are known as "eigenfaces," because they are the eigenvectors (principal components) of the set of faces; they do not necessarily correspond to features such as eyes, ears, and noses. The projection operation characterizes an individual face by a weighted sum of the eigenface features, and so to recognize a particular face it is necessary only to compare these weights to those of known individuals. Some particular advantages of our approach are that it provides for the ability to learn and later recognize new faces in an unsupervised manner, and that it is easy to implement using a neural network architecture.

14,128 citations


Showing all 116795 results

Eric S. Lander301826525976
Robert Langer2812324326306
George M. Whitesides2401739269833
Trevor W. Robbins2311137164437
George Davey Smith2242540248373
Yi Cui2201015199725
Robert J. Lefkowitz214860147995
David J. Hunter2131836207050
Daniel Levy212933194778
Rudolf Jaenisch206606178436
Mark J. Daly204763304452
David Miller2032573204840
David Baltimore203876162955
Rakesh K. Jain2001467177727
Ronald M. Evans199708166722
Network Information
Related Institutions (5)
Princeton University

146.7K papers, 9.1M citations

97% related

ETH Zurich

122.4K papers, 5.1M citations

96% related

École Polytechnique Fédérale de Lausanne

98.2K papers, 4.3M citations

96% related

Rensselaer Polytechnic Institute

39.9K papers, 1.4M citations

96% related

Georgia Institute of Technology

119K papers, 4.6M citations

96% related

No. of papers from the Institution in previous years

Top Attributes

Show by:

Institution's top 5 most impactful journals

Social Science Research Network

5.3K papers, 337.8K citations

Physical Review Letters

3.8K papers, 425.2K citations

The Astrophysical Journal

2.6K papers, 226.6K citations


2.4K papers, 814.9K citations