scispace - formally typeset
Search or ask a question
Institution

McGill University

EducationMontreal, Quebec, Canada
About: McGill University is a education organization based out in Montreal, Quebec, Canada. It is known for research contribution in the topics: Population & Poison control. The organization has 72688 authors who have published 162565 publications receiving 6966523 citations. The organization is also known as: Royal institution of advanced learning & University of McGill College.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that AMPK negatively regulates aerobic glycolysis (the Warburg effect) in cancer cells and suppresses tumor growth in vivo, and that its loss fosters tumor progression in part by regulating cellular metabolic pathways that support cell growth and proliferation.

760 citations

Journal ArticleDOI
TL;DR: Investigation of the expression of interleukin 4, IL-5, and interferon-gamma messenger RNA in skin biopsies from acute and chronic skin lesions of patients with atopic dermatitis indicates that initiation of acute skin inflammation in AD is associated with a predominance of IL-4 expression whereas maintenance of chronic inflammation is predominantly associated with increasedIL-5 expression and eosinophil infiltration.
Abstract: The mechanisms involved in the initiation and maintenance of skin inflammation in atopic dermatitis (AD) are poorly understood. Recent data suggest that the pattern of cytokines expressed locally plays a critical role in modulating the nature of tissue inflammation. In this study, we used in situ hybridization to investigate the expression of interleukin 4 (IL-4), IL-5, and interferon-gamma (IFN-gamma) messenger RNA (mRNA) in skin biopsies from acute and chronic skin lesions of patients with AD. As compared with normal control skin or uninvolved skin of patients with AD, acute and chronic skin lesions had significantly greater numbers of cells that were positive for mRNA, IL-4 (P < 0.01), and IL-5 (P < 0.01), but not for IFN-gamma mRNA expressing cells. However, as compared with acute AD skin lesions, chronic AD skin lesions had significantly fewer IL-4 mRNA-expressing cells (P < 0.01), but significantly greater IL-5 mRNA (P < 0.01). T cells constituted the majority of IL-5-expressing cells in acute and chronic AD lesions. Chronic lesions also expressed significantly greater numbers of activated EG2+ eosinophils than acute lesions (P < 0.01). These data indicate that although acute and chronic AD lesions are associated with increased activation of IL-4 and IL-5 genes, initiation of acute skin inflammation in AD is associated with a predominance of IL-4 expression whereas maintenance of chronic inflammation is predominantly associated with increased IL-5 expression and eosinophil infiltration.

759 citations

Journal ArticleDOI
TL;DR: A fully automatic "pipeline" image analysis framework that enhances the ability to detect small treatment effects not readily detectable through conventional analysis techniques and holds widespread potential for applications in other neurological disorders, as well as for the study of neurobiology in general.
Abstract: The quantitative analysis of magnetic resonance imaging (MRI) data has become increasingly important in both research and clinical studies aiming at human brain development, function, and pathology. Inevitably, the role of quantitative image analysis in the evaluation of drug therapy will increase, driven in part by requirements imposed by regulatory agencies. However, the prohibitive length of time involved and the significant intra- and inter-rater variability of the measurements obtained from manual analysis of large MRI databases represent major obstacles to the wider application of quantitative MRI analysis. We have developed a fully automatic "pipeline" image analysis framework and have successfully applied it to a number of large-scale, multi-center studies (more than 1000 MRI scans). This pipeline system is based on robust image processing algorithms, executed in a parallel, distributed fashion. This paper describes the application of this system to the automatic quantification of multiple sclerosis lesion load in MRI, in the context of a phase III clinical trial. The pipeline results were evaluated through an extensive validation study, revealing that the obtained lesion measurements are statistically indistinguishable from those obtained by trained human observers. Given that intra- and inter-rater measurement variability is eliminated by automatic analysis, this system enhances the ability to detect small treatment effects not readily detectable through conventional analysis techniques. While useful for clinical trial analysis in multiple sclerosis, this system holds widespread potential for applications in other neurological disorders, as well as for the study of neurobiology in general.

759 citations

Journal ArticleDOI
17 Jun 2016-Science
TL;DR: Various mechanisms controlling ribosome scanning and initiation codon selection by 5′ upstream open reading frames, translation initiation factors, and primary and secondary structures of the 5′UTR, including particular sequence motifs are described.
Abstract: The eukaryotic 5′ untranslated region (UTR) is critical for ribosome recruitment to the messenger RNA (mRNA) and start codon choice and plays a major role in the control of translation efficiency and shaping the cellular proteome. The ribosomal initiation complex is assembled on the mRNA via a cap-dependent or cap-independent mechanism. We describe various mechanisms controlling ribosome scanning and initiation codon selection by 5′ upstream open reading frames, translation initiation factors, and primary and secondary structures of the 5′UTR, including particular sequence motifs. We also discuss translational control via phosphorylation of eukaryotic initiation factor 2, which is implicated in learning and memory, neurodegenerative diseases, and cancer.

759 citations

Book
01 Jan 1995
TL;DR: In this paper, the authors present a mathematical model for time-series analysis of human heart rate response to Sinusoid inputs, showing that it is a function of the number of neurons in the human heart.
Abstract: 1 Finite-Difference Equations.- 1.1 A Mythical Field.- 1.2 The Linear Finite-Difference Equation.- 1.3 Methods of Iteration.- 1.4 Nonlinear Finite-Difference Equations.- 1.5 Steady States and Their Stability.- 1.6 Cycles and Their Stability.- 1.7 Chaos.- 1.8 Quasiperiodicity.- 1 Chaos in Periodically Stimulated Heart Cells.- Sources and Notes.- Exercises.- Computer Projects.- 2 Boolean Networks and Cellular Automata.- 2.1 Elements and Networks.- 2.2 Boolean Variables, Functions, and Networks.- 2 A Lambda Bacteriophage Model.- 3 Locomotion in Salamanders.- 2.3 Boolean Functions and Biochemistry.- 2.4 Random Boolean Networks.- 2.5 Cellular Automata.- 4 Spiral Waves in Chemistry and Biology.- 2.6 Advanced Topic: Evolution and Computation.- Sources and Notes.- Exercises.- Computer Projects.- 3 Self-Similarity and Fractal Geometry.- 3.1 Describing a Tree.- 3.2 Fractals.- 3.3 Dimension.- 5 The Box-Counting Dimension.- 3.4 Statistical Self-Similarity.- 6 Self-Similarity in Time.- 3.5 Fractals and Dynamics.- 7 Random Walks and Levy Walks.- 8 Fractal Growth.- Sources and Notes.- Exercises.- Computer Projects.- 4 One-Dimensional Differential Equations.- 4.1 Basic Definitions.- 4.2 Growth and Decay.- 9 Traffic on the Internet.- 10 Open Time Histograms in Patch Clamp Experiments.- 11 Gompertz Growth of Tumors.- 4.3 Multiple Fixed Points.- 4.4 Geometrical Analysis of One-Dimensional Nonlinear Ordinary Differential Equations.- 4.5 Algebraic Analysis of Fixed Points.- 4.6 Differential Equations versus Finite-Difference Equations.- 4.7 Differential Equations with Inputs.- 12 Heart Rate Response to Sinusoid Inputs.- 4.8 Advanced Topic: Time Delays and Chaos.- 13 Nicholson's Blowflies.- Sources and Notes.- Exercises.- Computer Projects.- 5 Two-Dimensional Differential Equations.- 5.1 The Harmonic Oscillator.- 5.2 Solutions, Trajectories, and Flows.- 5.3 The Two-Dimensional Linear Ordinary Differential Equation.- 5.4 Coupled First-Order Linear Equations.- 14 Metastasis of Malignant Tumors.- 5.5 The Phase Plane.- 5.6 Local Stability Analysis of Two-Dimensional, Nonlinear Differential Equations.- 5.7 Limit Cycles and the van der Pol Oscillator.- 5.8 Finding Solutions to Nonlinear Differential Equations.- 15 Action Potentials in Nerve Cells.- 5.9 Advanced Topic: Dynamics in Three or More Dimensions.- 5.10 Advanced Topic: Poincare Index Theorem.- Sources and Notes.- Exercises.- Computer Projects.- 6 Time-Series Analysis.- 6.1 Starting with Data.- 6.2 Dynamics, Measurements, and Noise.- 16 Fluctuations in Marine Populations.- 6.3 The Mean and Standard Deviation.- 6.4 Linear Correlations.- 6.5 Power Spectrum Analysis.- 17 Daily Oscillations in Zooplankton.- 6.6 Nonlinear Dynamics and Data Analysis.- 18 Reconstructing Nerve Cell Dynamics.- 6.7 Characterizing Chaos.- 19 Predicting the Next Ice Age.- 6.8 Detecting Chaos and Nonlinearity.- 6.9 Algorithms and Answers.- Sources and Notes.- Exercises.- Computer Projects.- Appendix A A Multi-Functional Appendix.- A.1 The Straight Line.- A.2 The Quadratic Function.- A.3 The Cubic and Higher-Order Polynomials.- A.4 The Exponential Function.- A.5 Sigmoidal Functions.- A.6 The Sine and Cosine Functions.- A.7 The Gaussian (or "Normal") Distribution.- A.8 The Ellipse.- A.9 The Hyperbola.- Exercises.- Appendix B A Note on Computer Notation.- Solutions to Selected Exercises.

759 citations


Authors

Showing all 73373 results

NameH-indexPapersCitations
Karl J. Friston2171267217169
Yi Chen2174342293080
Yoshua Bengio2021033420313
Irving L. Weissman2011141172504
Mark I. McCarthy2001028187898
Lewis C. Cantley196748169037
Martin White1962038232387
Michael Marmot1931147170338
Michael A. Strauss1851688208506
Alan C. Evans183866134642
Douglas R. Green182661145944
David A. Weitz1781038114182
David L. Kaplan1771944146082
Hyun-Chul Kim1764076183227
Feng Zhang1721278181865
Network Information
Related Institutions (5)
University of Toronto
294.9K papers, 13.5M citations

98% related

University of Minnesota
257.9K papers, 11.9M citations

96% related

University of California, San Diego
204.5K papers, 12.3M citations

96% related

University of Washington
305.5K papers, 17.7M citations

96% related

Cornell University
235.5K papers, 12.2M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023342
2022998
20219,055
20208,668
20197,828
20187,237