scispace - formally typeset
Search or ask a question
Institution

Medical Research Council

GovernmentLondon, United Kingdom
About: Medical Research Council is a government organization based out in London, United Kingdom. It is known for research contribution in the topics: Population & Malaria. The organization has 16430 authors who have published 19150 publications receiving 1475494 citations.
Topics: Population, Malaria, Poison control, Gene, Antigen


Papers
More filters
Journal ArticleDOI
TL;DR: The distribution of actin and tubulin during the cell cycle of the budding yeast Saccharomyces was mapped by immunofluorescence using fixed cells from which the walls had been removed by digestion to suggest that it may have a role in the localized deposition of new cell wall material.
Abstract: The distribution of actin and tubulin during the cell cycle of the budding yeast Saccharomyces was mapped by immunofluorescence using fixed cells from which the walls had been removed by digestion. The intranuclear mitotic spindle was shown clearly by staining with a monoclonal antitubulin; the presence of extensive bundles of cytoplasmic microtubules is reported. In cells containing short spindles still entirely within the mother cells, one of the bundles of cytoplasmic microtubules nearly always extended to (or into) the bud. Two independent reagents (anti-yeast actin and fluorescent phalloidin) revealed an unusual distribution of actin: it was present as a set of cortical dots or patches and also as distinct fibers that were presumably bundles of actin filaments. Double labeling showed that at no stage in the cell cycle do the distributions of actin and tubulin coincide for any significant length, and, in particular, that the mitotic spindle did not stain detectably for actin. However, both microtubule and actin staining patterns change in a characteristic way during the cell cycle. In particular, the actin dots clustered in rings about the bases of very small buds and at the sites on unbudded cells at which bud emergence was apparently imminent. Later in the budding cycle, the actin dots were present largely in the buds and, in many strains, primarily at the tips of these buds. At about the time of cytokinesis the actin dots clustered in the neck region between the separating cells. These aspects of actin distribution suggest that it may have a role in the localized deposition of new cell wall material.

714 citations

Journal ArticleDOI
TL;DR: The data showed that TGF-β1 induced A549 cells with an alveolar epithelial type II cell phenotype to undergo EMT in a time-and concentration-dependent manner, and cells that had undergone EMT showed enhanced expression of markers of fibrogenesis including collagens type I and III and CTGF.
Abstract: Fibroblastic foci are characteristic features in lung parenchyma of patients with idiopathic pulmonary fibrosis (IPF). They comprise aggregates of mesenchymal cells which underlie sites of unresolved epithelial injury and are associated with progression of fibrosis. However, the cellular origins of these mesenchymal phenotypes remain unclear. We examined whether the potent fibrogenic cytokine TGF-β1 could induce epithelial mesenchymal transition (EMT) in the human alveolar epithelial cell line, A549, and investigated the signaling pathway of TGF-β1-mediated EMT. A549 cells were examined for evidence of EMT after treatment with TGF-β1. EMT was assessed by: morphology under phase-contrast microscopy; Western analysis of cell lysates for expression of mesenchymal phenotypic markers including fibronectin EDA (Fn-EDA), and expression of epithelial phenotypic markers including E-cadherin (E-cad). Markers of fibrogenesis, including collagens and connective tissue growth factor (CTGF) were also evaluated by measuring mRNA level using RT-PCR, and protein by immunofluorescence or Western blotting. Signaling pathways for EMT were characterized by Western analysis of cell lysates using monoclonal antibodies to detect phosphorylated Erk1/2 and Smad2 after TGF-β1 treatment in the presence or absence of MEK inhibitors. The role of Smad2 in TGF-β1-mediated EMT was investigated using siRNA. The data showed that TGF-β1, but not TNF-α or IL-1β, induced A549 cells with an alveolar epithelial type II cell phenotype to undergo EMT in a time-and concentration-dependent manner. The process of EMT was accompanied by morphological alteration and expression of the fibroblast phenotypic markers Fn-EDA and vimentin, concomitant with a downregulation of the epithelial phenotype marker E-cad. Furthermore, cells that had undergone EMT showed enhanced expression of markers of fibrogenesis including collagens type I and III and CTGF. MMP-2 expression was also evidenced. TGF-β1-induced EMT occurred through phosphorylation of Smad2 and was inhibited by Smad2 gene silencing; MEK inhibitors failed to attenuate either EMT-associated Smad2 phosphorylation or the observed phenotypic changes. Our study shows that TGF-β1 induces A549 alveolar epithelial cells to undergo EMT via Smad2 activation. Our data support the concept of EMT in lung epithelial cells, and suggest the need for further studies to investigate the phenomenon.

711 citations

Journal ArticleDOI
TL;DR: An approach to identify disease-relevant tissues and cell types by analyzing gene expression data together with genome-wide association study (GWAS) summary statistics and found significant tissue-specific enrichments for 34 traits.
Abstract: We introduce an approach to identify disease-relevant tissues and cell types by analyzing gene expression data together with genome-wide association study (GWAS) summary statistics. Our approach uses stratified linkage disequilibrium (LD) score regression to test whether disease heritability is enriched in regions surrounding genes with the highest specific expression in a given tissue. We applied our approach to gene expression data from several sources together with GWAS summary statistics for 48 diseases and traits (average N = 169,331) and found significant tissue-specific enrichments (false discovery rate (FDR) < 5%) for 34 traits. In our analysis of multiple tissues, we detected a broad range of enrichments that recapitulated known biology. In our brain-specific analysis, significant enrichments included an enrichment of inhibitory over excitatory neurons for bipolar disorder, and excitatory over inhibitory neurons for schizophrenia and body mass index. Our results demonstrate that our polygenic approach is a powerful way to leverage gene expression data for interpreting GWAS signals.

707 citations

Journal ArticleDOI
TL;DR: It is proposed that a critical determinant of life-time disease risk is the ability to develop clinical immunity early in life during a period when other protective mechanisms may operate, and measures which reduce parasite transmission, and thus immunity, may lead to a change in both the clinical spectrum of severe disease and the overall burden of severe malaria morbidity.

705 citations

Journal ArticleDOI
TL;DR: Memory span is shown to be effectively independent of information per item, and to depend substantially on the probability of acoustic confusion within vocabularies.
Abstract: Immediately after visual presentation, subjects were required to recall 6-letter sequences. Sequences were drawn from four vocabularies. There were two 3-letter vocabularies, distinguished by the probability of acoustic confusion within them, and two 9-letter vocabularies similarly distinguished. Memory span is shown to be effectively independent of information per item, and to depend substantially on the probability of acoustic confusion within vocabularies.

704 citations


Authors

Showing all 16441 results

NameH-indexPapersCitations
Shizuo Akira2611308320561
Trevor W. Robbins2311137164437
Richard A. Flavell2311328205119
George Davey Smith2242540248373
Nicholas J. Wareham2121657204896
Cyrus Cooper2041869206782
Martin White1962038232387
Frank E. Speizer193636135891
Michael Rutter188676151592
Richard Peto183683231434
Terrie E. Moffitt182594150609
Kay-Tee Khaw1741389138782
Chris D. Frith173524130472
Phillip A. Sharp172614117126
Avshalom Caspi170524113583
Network Information
Related Institutions (5)
National Institutes of Health
297.8K papers, 21.3M citations

94% related

University of California, San Francisco
186.2K papers, 12M citations

92% related

Karolinska Institutet
121.1K papers, 6M citations

92% related

French Institute of Health and Medical Research
174.2K papers, 8.3M citations

92% related

Johns Hopkins University School of Medicine
79.2K papers, 4.7M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20236
20229
2021262
2020243
2019231
2018309