scispace - formally typeset
Search or ask a question
Institution

Meidensha

CompanyTokyo, Japan
About: Meidensha is a company organization based out in Tokyo, Japan. It is known for research contribution in the topics: Electric power system & Wind power. The organization has 593 authors who have published 854 publications receiving 15564 citations. The organization is also known as: Meiden Kabushiki Kaisha.


Papers
More filters
Journal ArticleDOI
TL;DR: The first part of a two-part paper that has arisen from the work of the IEEE Power Engineering Society's Multi-Agent Systems (MAS) Working Group as mentioned in this paper examines the potential value of MAS technology to the power industry.
Abstract: This is the first part of a two-part paper that has arisen from the work of the IEEE Power Engineering Society's Multi-Agent Systems (MAS) Working Group. Part I of this paper examines the potential value of MAS technology to the power industry. In terms of contribution, it describes fundamental concepts and approaches within the field of multi-agent systems that are appropriate to power engineering applications. As well as presenting a comprehensive review of the meaningful power engineering applications for which MAS are being investigated, it also defines the technical issues which must be addressed in order to accelerate and facilitate the uptake of the technology within the power and energy sector. Part II of this paper explores the decisions inherent in engineering multi-agent systems for applications in the power and energy sector and offers guidance and recommendations on how MAS can be designed and implemented.

1,063 citations

Journal ArticleDOI
TL;DR: The problem of interoperability between different multi-agent systems and proposes how this may be tackled and the various options available are described and recommendations on best practice are made.
Abstract: This is the second part of a two-part paper that has arisen from the work of the IEEE Power Engineering Society's Multi-Agent Systems (MAS) Working Group. Part I of this paper examined the potential value of MAS technology to the power industry, described fundamental concepts and approaches within the field of multi-agent systems that are appropriate to power engineering applications, and presented a comprehensive review of the power engineering applications for which MAS are being investigated. It also defined the technical issues which must be addressed in order to accelerate and facilitate the uptake of the technology within the power and energy sector. Part II of this paper explores the decisions inherent in engineering multi-agent systems for applications in the power and energy sector and offers guidance and recommendations on how MAS can be designed and implemented. Given the significant and growing interest in this field, it is imperative that the power engineering community considers the standards, tools, supporting technologies, and design methodologies available to those wishing to implement a MAS solution for a power engineering problem. This paper describes the various options available and makes recommendations on best practice. It also describes the problem of interoperability between different multi-agent systems and proposes how this may be tackled.

523 citations

Journal ArticleDOI
TL;DR: In this paper, a generalized predictive control strategy based on average wind speed and standard deviation of wind speed was proposed to control the pitch angle of the blades of a wind turbine generator.
Abstract: Wind energy is not constant and windmill output is proportional to the cube of wind speed, which causes the generated power of wind turbine generators (WTGs) to fluctuate. In order to reduce fluctuation, different methods are available to control the pitch angle of blades of windmill. In a previous work, we proposed the pitch angle control using minimum variance control, and output power leveling was achieved. However, it is a controlled output power for only rated wind speed region. This paper presents a control strategy based on average wind speed and standard deviation of wind speed and pitch angle control using a generalized predictive control in all operating regions for a WTG. The simulation results by using actual detailed model for wind power system show the effectiveness of the proposed method.

446 citations

Journal ArticleDOI
TL;DR: In this paper, the optimal control of distribution voltage with coordination of distributed installations, such as the load ratio control transformer, step voltage regulator (SVR), shunt capacitor, shunt reactor, and static var compensator, is proposed.
Abstract: In recent years, distributed generation, as clean natural energy generation and cogeneration system of high thermal efficiency, has increased due to the problems of global warming and exhaustion of fossil fuels. Many of the distributed generations are set up in the vicinity of the customer, with the advantage that this decreases transmission losses. However, output power generated from natural energy, such as wind power, photovoltaics, etc., which is distributed generation, is influenced by meteorological conditions. Therefore, when the distributed generation increases by conventional control techniques, it is expected that the voltage change of each node becomes a problem. Proposed in this paper is the optimal control of distribution voltage with coordination of distributed installations, such as the load ratio control transformer, step voltage regulator (SVR), shunt capacitor, shunt reactor, and static var compensator. In this research, SVR is assumed to be a model with tap changing where the signal is received from a central control unit. Moreover, the communication infrastructure in the supply of a distribution system is assumed to be widespread. The genetic algorithm is used to determine the operation of this control. In order to confirm the validity of the proposed method, simulations are carried out for a distribution network model with distributed generation (photovoltaic generation).

428 citations

Journal ArticleDOI
TL;DR: In this paper, a new unit commitment problem, adapting extended priority list (EPL) method is introduced, which consists of two steps, in the first step, in order to get rapidly some initial unit commitment problems by priority list method, operational constraints are disregarded.
Abstract: This paper introduces a new unit commitment problem, adapting extended priority list (EPL) method. The EPL method consists of two steps, in the first step we get rapidly some initial unit commitment problem schedules by priority list (PL) method. At this step, operational constraints are disregarded. In the second step unit schedule is modified using the problem specific heuristics to fulfill operational constraints. To calculate efficiently, however, note that some heuristics applied only to solutions can expect improvement. Several numerical examples demonstrate the effectiveness of proposed method.

406 citations


Authors

Showing all 593 results

NameH-indexPapersCitations
Toshihisa Funabashi5645312413
Motonobu Goto5649011624
Hiroshi Noguchi4767710366
Takao Inoue25382756
Kenji Kato192671597
Hiroyuki Kita151642280
Takayuki Mizuno1348577
Kazutoshi Nagayama1337415
Yasuhiro Yamamoto1257481
Akihisa Hosoe12224807
Yugo Tadano1257383
Tadashi Ashikaga1238587
Yoshihiko Matsui1139451
Masayuki Sakaki1145386
Morio Miyahara1122643
Network Information
Related Institutions (5)
Mitsubishi Electric
27.5K papers, 255.6K citations

86% related

Nagaoka University of Technology
10.1K papers, 158.4K citations

86% related

Central Research Institute of Electric Power Industry
6.5K papers, 126.4K citations

82% related

Hitachi
101.4K papers, 1.4M citations

81% related

Nagoya Institute of Technology
19.1K papers, 255.6K citations

80% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202121
202021
201927
201827
201728
201629